(Class) Test-2: Analysis II Statistics and Analysis (202001350)

25-October-2023, 13:45 - 15:15, CR-2M

Total Points: 20

All answers must be motivated. Approach to a solution is equally important as the final answer. Use of an electronic calculator or a book is not allowed. Good Luck!

- 1. We define X to be the space consisting of the open interval (0,1) united with the point $\{\pi\}$, i.e., $X = (0,1) \cup \{\pi\}$. On X we define the standard metric of \mathbb{R} , i.e., $\rho(a,b) = |a-b|$.
 - (a) Does there exists in (X, ρ) an open subset consisting of one point? If yes, give at least one of these sets, and a proof showing that it is open. If no, explain why. [2]
 - (b) Is the subset (0,1) a compact subset of (X,ρ) ?
 - (c) On X we define the function

$$f(x) = \begin{cases} x^2 & x \in (0,1), \\ x^2 + 1 & x \notin (0,1). \end{cases}$$

Is f continuous from (X, ρ) to \mathbb{R} ?

[2]

[2]

- 2. Let (Y, τ) be a non-empty metric space.
 - (a) Let $\{y_n, n \in \mathbb{N}\}$ be a Cauchy sequence in (Y, τ) . Prove that it is a bounded sequence. [2]
 - (b) Give the definition of (Y, τ) being connected. [2]
- 3. Let $f: \mathbb{R} \to \mathbb{R}^n$ be a C^1 -function. Show that $g(t) := ||f(t)||^2 f(2t)$ (the Euclidian squared norm of f(t) times f(2t)) is differentiable from \mathbb{R} to \mathbb{R}^n , and determine its derivative. [2]
- 4. Given the function $g: \mathbb{R}^2 \to \mathbb{R}$ defined as $g(x,y) = x^3y^2 + 1$. Determine the tangent hyperplane at $(\mathbf{a}, g(\mathbf{a}))$, where $\mathbf{a} = (1, 2)$.
- 5. Given the function $f: \mathbb{R}^2 \to \mathbb{R}^2$:

$$f(x,y) = \left[\begin{array}{c} xe^x \cos(y) - e^x \sin(y) \\ e^x \cos(y) + xe^x \sin(y) \end{array} \right].$$

- (a) Show that f is differentiable in \mathbb{R}^2 , and determine its total derivative.
- (b) Prove that there exists an f^{-1} which maps (e, e) to $(1, 2\pi)$ and is differentiable in some nonempty open set containing (e, e). Compute the total derivative of this function in the point (e, e).
- (c) Does the inverse function exist globally? [1]

Grade: $\frac{\text{score on test}}{20} \times 9 + 1$ (rounded off to one decimal place)