1 Algebra

1.1 Exponential Properties
(i) 2¥=1
i) "™
(iii) _l_,:r pr-m 1

“\.) (J:n]m

© (@) -5

prtm

il

(vi) o~ o
(vii) =25 =a"
wi) (£) " = (@) =&

1 ”n o
(ix) :1:7’-'? = (g:?ﬁ) ™ = Wan

1.2

(i) log, (0) = Undcfincd

(i) log, (1) = 0

(iii) log,(n) =1

(iv) log,(n*) ==z

(v) nlosu(®) =g

(vi) log, (") = rlog,, (x) # lugh (z) = (log, (z))"
(vii) log, (vy) =log, (x) + log, (¥)
(i) log,, (£) = log,,(«) — log,(v)

(ix)

Logarithin Properties

- iog,,(:r) = lugn (%)

(x) ,l—:-:%%: = log,, (x)

1.3 Radical Properties
(i) ¢F=ar
(i) y7y = Vayy
flll) " TT - nu\}/‘?
N . AE
) Vf = vy
(\') YR = ry ifuots odd
(vi) ¥ = |z|, if n is even
1.4 Absolute Value Properties
T I ifrz0Q
W = {—.r ifg <
(i) x| >0
(iii) | — 2| = |=|
(iv) lea| = cla], ife>0

(v) eyl = zlly!
(vi) jz?] = 2?
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(vil) |z™| = |z|®
(i) || = 11
(ix) la—b] = a,ifa<b
(x) lat+b<a|l+|b
(xi) la| — |6l <|a b

1.5 Factorization
(i) = a)(z — a)

(i1) 2 + 2az + a? = (z + a)?

(iii) 22 — 2az + a2 = (z — a)?

(iv) 2+ (a+b)aw+ab= (z+a)(x+b)

(v) 2% + 3ax? + 3a%z + a® = (z + a)®

(vi) 28 — 3az? + 3a%z — a® = (z — a)?
(vii) x® +a® = (2 + a)(z? — ax + a?)
(viii) #? —a® = (z — a)(z? + ax + a?)

(ix) _!.2n . ﬂ2r|. (rn . a"}[.z'“ & "n)

2 _ a2=(.r_

1.6 Complete The Square
ax? +bzx+ec=0 = alz+d)?+e=0

b
.d—er
2

By i B
Ll oaad -

1.7 Quadratic Formula

— b b2 4
5 = :i:)f ac

az? +be+ec=0 = e
- If b2 —dac > 0 = Two real unequal solutions.
IR

dac = 0 = Two rcpeated real solutions.

CIf B2

dac < 0 = Two complex solulions.

2 Functions

2.1 Domain

- Fractions denominator = 0.

- Logarithms if the base is a number, the argument

must be > 0, if the base depends on a variable, the
base must be > 0A # 1.

- Roots with even index, the argument must be

> 0, for roots with odd index the domain is R,

- Arccos/Arcsin the agrument must he € [—-1,1],

For other trig functions we use trig properties to
change them to cos and sin.

- Exponential basc > 0.

2.2 Parity

We consider the partiy of the function only if
Dom([) is mirrored on the origin:

(Dom(f) = [—2,2]V (—cc. 2¢) V (—oe, —1] U [1, oc]).

.- Even function (with respect to the y axis) if:

fl-a) = f(x).

. 0dd function (with respect to the origin) if:

f(—a) = =f(e)-

- In every other case the function is neither eveu nor

odd.

2.3 Axis Intercept

- X intercept can be many; is calculated by solving

f(@) = 0. 1 flz) = $£2 we solve just g(x) = 0.

The points are then (x;,0).

- Y intercept can be just one; is calculated by

setting . 0, the point is then (0, f(0)). If
x = U ¢ Dom(f) there is no Y intercept.

2.4 Sign
The sign can only change when there is a x inter-
cept (if the function is continuous), thus if we solve

flx) = 0 we get both the X intercepts and where
the function is positive.

2.5 Asymptotes/Holes

- Hole at point (o, fu mpfsﬁu".‘.’(z()}) if plugging the

critical point g in the munerator of f gives %

. Vertical asymptote at a critical point rg if:

lim_  — f(x) = £oo (left at x = 2¢)
yag

limq__”g f(z) = =0 (right at a = zp).
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- Max if: f(z; -
- Min if: f'(x;

- Inflection if (nse sign talle):

. Horizontal aysmptote (if domain is unlimited at

toc) if:
limy 4o f(z) = k (right y = k)
limr——x f(z) = h (left y = h).

- Oblique avsmptote (if domain is unlimited at

f) if:

lim;— o0 ﬂ:—] = mAlimro4ac[f(z) —mx] = ¢
(right at y = ma +q)

Hnts =20 h;" = mA limg-s_[f(z).— mz] = ¢

(left at y = ma = q).

2.6 Monotonicity

A funciton f is:

- Monotonically increasing if:

Vo.y:x <y= flx) £ fly)

. Monotonically decreasing if:

Vz,y:x<y= f(z) 2 fly)

. Strictly increasing if:

Ye.yroe<yg= flz) < fly)

- Strictly decreasing if:

Ve.yio < y= fle) > fly)

2.7 Max, Min

Calculate f'(x) = 0, then all the solutions x; are
onr candidates, where for a small € > 0:

e)>0Af'(xi+€) <.
€) <OA fi{z; +€)>0.
Fei—€) <OA fi(zi +¢€) <0, of
Fxi—€) >0Af'(zi+€)}>0

If f/(x) > 0. then f is strictly increasing.
If f/(x) < 0. then [ is strictly decreasing.
If f/(x) = 0 fis constant.

2.8 Convexity

- Convex (U) if: f(x) >0
- Cooncave () if: f"(z) <0

2.9 Inflection Points

Caleulate () = 0. then all the solutions x; are
our candidates (except where f(z) is not defined),
where for a small ¢ > O:

- Increasing Inflection if:

Fllzi—e) <0 fx;+¢€) >0

- Decreasing Inflection if:

f'zi—€) >0NA f'(zi +€) <0

- Otherwise nothing happens on z;.
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3 Trigonometry
3.1 Unit Circle

excsc|

3.2 Domain and Range

- sin:R— [-1,1]

- cus: R— [-1,1]
-tan:{.r(-fR\:r#%—krr}—'—P.
-cot:{r€R |[z#kr} —R

+ €8C
« sec

- 8in

{zeR | & #kn} — R\ (~1,1)
:{J'FR & A ‘—Z*kir}—)l?\(—l.l}

1

1,1 — [-3.3]
- cos™ 1 [=1,1] — [0,7]

-tan~l: R — |——;- %

3.3 Pythagorean Identities

(i) sin?(x) + cos?(z) =1
(ii) tan®(x) + 1 = sec?(z)
(ifi) 1+ cot®(xr) = esc?(x)

3.4 Periodicity Identities

(i) sin(x & 27) = sin(z)
(ii) cos(x £ 27) = cos(x)
(iii} tan(r = ) = tan(z)
(iv) cot(z & =) = cot(x)
(v) ese(x £ 27) = cse(xr)
(vi) sce(z £ 27) = see(x)
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3.5 Reciprocal Identities

(i) cot(x) = ﬁr—
(ii) esc(x) ﬁ

1

(iii) sec(r) = =y

3.6 Quotient Identities
(i) tan(z) = 2iniz)

cos(.a)

cos{x
sinfa)

(ii) cot(x) =

3.7 Sum Identities

(i) sin(x = y) = sin(x) cos(y) = cos(x) sin(y)
(ii) cos(r + y) = cos(z) cos(y) — sin(x) sin(y)
(iif) tau(e + y) = Soniz)rtanty)

I=tan{r)tan(y

3.8 Difference Identities

(1) sin(z — y) = sin(x) cos(y) — cos(z) sin(y)
(i1) cos(x - y) = cos(z) cos(y) + sin(z) sin(y)
(iil) tan(z — y) = Sanlz)-tan(y)

1+tan =) tan(y)

3.9 Double Angle Identities
(i) sin(2x) = 2sin(x) cos(x)
(ii) cos(2x) = cos?(x) — sin?(ir)
(ii1) cos(2x) = 2cos?(x) — 1 = cos?(x) . Eﬂ%i‘—l
(iv) cos(2x) = 1 — 2sin?(x) = sin?(z) = l—-—“%,s&]

(v} 1311(2_;-) _2_[_2_15‘1

1—tan=(«

3.10 Co-Function Identities

(i) sin (F — ) = cos(x)
(ii) cos (3 — z) =sin(a)
(iif) tan (% - z) = cot(x)
(iv) cot (§ — x) = tan(x)

(v) esc (5 —«) = sce(x)

(vi) sec (§ —x) = cse(z)

3.11 Even-0Odd Identities
(i) sin(-z) = - sin(x)

(ii) cos(—z) = cos(x)

(iii) tan(--7) = — tan(z)

(iv) cot(—z) = — cot(z)

(v) ese(—z) = — csc(z)

(vi) sec(—x) = sce(x)

3.12 Half-Angle Identities
(i) sin (§) = =/ 1=sgpld

[ 1+cos(r)

(ii) cos () = =/

® o  t=cos(x)
(iii) tan (3) —\/T

Gy 3 1-cos(a}
“‘"J tan (%) = :i;ht )
. .- sin(e)
(‘) tan (%) 1+cos(z

3.13 Sum-to-Product Formulas
(i) sin(r) + sin(y) = 2ein (3 ) cos (252)
(i) sin(x) — sin(y) = 2sin (452 ) cos (£5¢)

(iti) cos(x) + cos(y) = 2cos () cos (25¢)

(iv) cos(x) — cos(y) = — 2sin (T—:‘-’-) cos (’—:'1)

3.14 Product-to-Sum Formulas
(i) sin(z)sin(y) = % [cos(z — y) — cos(z + )]
(i) cos(xr) cos(y) = 1 [cos(z — y) + cos(x = y)]
(iii) sin(z) cos(y) = § [sin(z + ) + sin(x — )]

(iv) cos(x)sin(y) = % [sin{z + y) — sin(a — ¥)]

3.15 Tangent expression

Ifu=tan(3): f!.f.'!,‘ = —"’sdu]

lau=

(i) cos(r) H;-
(ii) sin(z) = J:"_—"'l-_;

2u

(iii) tan{xr) = 24y

3.16 Hyperbolic Functions

" -3
it -

2

(ii) cosh(r) = ZHe—"

2

(i) sinh(z) =

r -
B —

e* e

(iii) tanh(r) =

3.17 Laws of Sines

() sinﬂ(u} ﬂillb-” =-i"‘f‘-')

3.18 Laws of Cosines
(i) a® = b2 +¢2 - 2be cos(a)
(i) b2 =a? + ¢ - 2accos(8)

(iii) ¢® = a? + b = 2abcos(y)
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3.19 Degrees
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4 Limits, Sup and Inf

Definition 4.1 (Limits). Let f(x) be a fune-
tion defined on D C R, let xg be a limit point
in D, then we say that limz ., f(z) =L ER
if for all ¢ there exists a § such that:

veeD: 0< |z

wo|l < o= |fla)— L]l <e

Sequence Definition:
lim f(z) =L« V(x,) where lim z, = &y, then
b ?I|: n-—Fx

i Btk

4.1 Limit Properties

Assume that lim, ., f(2) and lim, ., g(x) exists
and that ¢ € R, then:

(i) Jim [ef(a)] :'zlim )
T—+Tp ~Ip

(ii) lim [f(z) £ g(x)] = lim f(z)= rlim g(x)
P Tz rTn

(iii) lim [f(x)g(r)] l'1m1f(.1') lim g(z)
r—»xq 2T T

(iv) lim [f“)] = lirg glx) #0

glz)]  lim glz) v—
r—r0

im f(xr)

z—Zp

(v) lim [f(@)" = [m f(.r)] d

(vi) lim
&I

[VF@] = ¢/ lim, 1)

I o = xn
r—xH

(vii)

4.2 Chain Rule

let f and g be continuous, and given
lig—zg flyle)) of composed function we can
solve limu 2, g(x) = yu. then:

lim f(g(z)) = lim f(y)
&=Ly y—¥o

4.3 Exponential Rule

Let f and g be continuous, where limy—s, f(2) =
Flzp) > 0 and limy 5., g(x) = glzy) (where both
limits exists), then:

lim £(2)#™) = J(20)**")
TrIy)

"4.4 Root Trick

_ . VI+g
V-9 s

lim /f—g= lim
=T vi-g r—=Th
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4.5 E-Log Trick

lim f7 = lim 7™
T—=Fqn =T

Theorem 1: L'Hépital’'s Rule

If by plugging @xo in *;—L:—} we get '—l} or ==,

+oc
then:

lim ﬂf-)- = lim --«——f‘(x]

- 1 f =L& Lt
a—ro g(x) =T g (:.r)

Theorem 2: Limit Squeeze Theorem

Let Ililu F), if gle) < f(o) € h(r), Ve, and
— 1

lim g(xr) = lim h(z) = L, then:

L —hTg Ly

lim f(z) =L

EHTO

4.6 Tmportant Limits
. T\ D 3
Jim (14+2)" =e

a” — 1

lim ——— = lu(n
n-—+0 [ ] { )

lim In(n) = oo
n-—+oc

log, (1 +n) 1
In(a)

lim

oo n

log,(1+n) 1
e o

lin
n o0 n Infa)
. gin(n) ‘
lir =1
-0 n

. 1—cos(n

lim ) 0
n—0 n

., 1—cos(n) 1
lim = = -
n—0 n# 2
. tan(n

lim ) 1
n—0 n

'

. n!

lim —)
n-rx "t

. e =1

lim =
n—U n

= n/y
lim vnl=oc
n—oc

. lim Yn=1
n—+o0

4.7 Strategy

Given a limit lim f(z):
L-rrg

1. Is f(xg) solvable normally (polynomials and
radicals) 7

2. Try to decompose the limit with the properties
and go back to step 1 for each piece.

3. If it contains a radical expession try with the
root trick, pay attention that if it’s not a square
root you can try with the third root factoriza-
tion, but for bigger roots it’s probabily another
method. If the root contains the entire limit it
can be put out (PR6).

4. If it contains a trigonometric function try
with the Squeeze Theorem, if the trig func-
tion contains another function go with the com-
posed function decomposition. If it simplifies
well with the series definition of cos, sin, or tan
try to simplify the sum and solve each piece.

5. Ifit's a composed function try the chain rule.

6. If it’s raised to an unusual power try the E-

Log trick.

tog

§ 0 ; <
. If you get 5 or 322 use I"'Hopital.

8. If vou get +n0- 0 or 0 - +oc tranform the func-
tion into a fraction so that vou get % or or i—f
then use I'Hopital.

4.8 Supremum and Infimium

Definition 4.2.

. The Supremum of a set S denoted sup(S) =
u is a number u that satisfies the condition
that u is an upper bound of S and for agy
upper bound v of S, u < v.

- The Infimium of a set S denoted inf(S) = u
is a numbcr u that satisfies the condition that
u is an lower bound of S and for any lower
bound v of §. u 2 v.

. If the supremum doesn’t exists we can write:

sup(S) = .

- If the infimium doesn’t exist we can write;

inf(8) = —co.

- To prove that the minimum doesn’t exist:

Vedny € N: f(z) < inf(a) + e ¥ = ng.

. To prove that the maximum doesn’t exist:

Yedny € N : f(x) < sup(a) —€ Yo > ny.
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5 Continuity

Definition 5.1 (Pointwise Contiunous).

A function f : [a,b] = & is pointwise contin-
uous at zg € la,b] if imz—z, f(x) = flzo),
or

Ve3d Vo : (|z

zo| < 8= |f(z) - flzo)l <€)

Definition 5.2 (Uniformly Continuous).

A funetion f : [a.b] — R is uniformly con-
tinuous if it 's continuous at every point in it’s
domain Yag € [a,b] @ lima—u, f(2) = flza),
or:

Vedd Vo, z : (lz—20| < § = [f(2)—Ff(z0)| <€)

Definition 5.3 (Lipschitz Continuous).
A function f :|a,b] — R is Lipschitz contin-
uous 1f:

JLVz. 20 : | f(z) — f(zo)| < Liz — z0|

5.1 Properties

Let f and g be continuous, then also f=g. f-g.
::7 & g # 0 and fog are continuous.

(i) Polynomials: All polynomials P(x) are
pointwise continuous on any bounded interval.

(ii) Bijective: If f: [a.b]
monotone, then it's bijective and f
continuous.

» R is continuous and
I s also

Theorem 3: Intermediate Value

Let f be a continuous function on [a, b] and
let s be a number with f(a) < s < f(b), then
there exists at least one solution to f(x) = s.

Theorem 4: Extreme Value

Let f : [ — R be a continuous function on
I = |a,b] then there exist two numbers ¢ € I
and d € I such that:

Veel: m=fle) S fx)<fld)=M

Where nr is a lower bound and M an upper
bound.
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H 3 o d ¢ g
6 Derivatives + 4L (sinh(x)) = cosh(z) Théorea T: Méon Vilns Thecran

Definition 6.1 (Derivative). The derivative 42 Co0<®)) = inb() sarr losy g oy i g oo
e AT S g entiable on Ja. b/, then exists ¢ € |a.b] with:
f f(z) espect to @ s +: (tanh(z)) = o= > 1 = tanh®(x) F(B) = fa) + f(e)(b— a), or:
& g e Sl T B)—He) & peicim] . :
— flx) = }EITG e e L (sinh a)) = a5 s Fle) = ftb;),— fla)
—-a
= lim fzo) = f(z) - 2L (cosh™ () = '2
Tz Ty — = we 72=1
d 1 1
» = (tanh™ " (x)) = z
6.1 Properties i it
(i) £@)=0 ; :
() [ty = e (@) 6.3 Differentiable
(i) (f +9) = f'() +g'(x) Theorem 5: Differentiable
(iv) (fg) =['g+ f¢'
) (.[)’ ' ' A [unction f is differentiable at a point xy iff:
v : uﬁﬁ?—
9 g
(i) 2 (@) = nlf@)]" ' f'(2) b SELSOO) L, )T G
N aleer z — xo zrz, T — 0
(vii) 75 (F(9(2) = f'(9(2))g' () =
(i) [F~1(x) = sty
) L I U= =) (i) Tangent Line: The function [ has a tangent
. = point at a if and only if f is differentiable at a.
6.2 Common Derivatives The equation of the tangent line is:
: ﬁ(a:) =1 '
¢ (i) = sign(a) v=r(a)—a)+ f(a)
—:,t{f"") e®
e (ii) Continuous: 1If f(r) is differentiable at a.
. 'Jri‘.f‘l'r) =a”In(a) then [ is continunons at a. The converse is not
_d_( l) -—-l-r true (l‘.g. f(!') - '.T.!. a 0).
dg\ig/ ™ g
o lr (iii) Classes: If f : |a,b —» R is differentiable &
T VTSR times we say that [ € C*([a.b]) where (' is
i ) () i s A called classification function. If f is differen-
gz (In(f(z) = e s o flz)== tiable infinite times we say that [ is smaooth
‘ di“n lzh =L, z #0 (f € €% ([a, 1))
T 1 et
+ f(log, () = griys 2> 0
. ﬁ(sjn(.r)) = cos(z) Theorem 6: Inverse Function Theorem
. -d%(cos(.c)] = —sin(z) Let f : [a,b] — R be continuous. differen-
d : tiable and stricly increasing where Yz € [a,b] :
- E(tan(:r)] = sec?(z) = tan?(z) + 1 Fle) > 0 and
d Y sd
] ﬂ(cot(i)) = — ¢sc2(x) e /inf/_f(;r) < sup flz)=d
. (}—L(sm‘(r)) = sec(z) tan(x) SoRss g
. d'—i(csc(z‘)} = — csclz) cot{x) then:
i -rf—;‘c[sin Yz)) = 11 . - f:la.b] = ]e,d| is bijective.
B s xl S O O | T"a. b[ is differentiable with
L dg (oo TH(®)) = = e =@ = gy
- %(tan"l(r)) = ﬁ-
Flavio Schneider Analysis I « Cheat Sheet Page 4
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7 Integrals

Definition 7.1 (Riemann-Integral). Given:

A continuous function f(x) : [u,b] — R

+ A partition P == {a = x0,...;&n-1,4n = b}
where [; = |zi—1, z;)
- A set of points € ‘= {£1,....En} where

&€ Ii = lmi=1 il
Then the Riemann-Sum is defined as:

S5, P,&) = (&) - (=i — %i-1)

i=l

Where the Riemann-Integral is:

b "
[ flz)dz = nlil}:lx Zf{fi) (@i — Ti—1)
a i=1

(i) Over Sum:

n

S(f,P) = lim Zsupf[:c) {3 — xi-1)
. i=17
Infimum of the over sum:

i%ff"}"(f. P):=(b~a)- lim —;gl_lpf

(ii) Under Sum:
lnn z mf f(.z:) (i

Supremum of thc under sum:

iy
supS(J. b=l Y = i T
S P) = (o) i, 23 o S

i(lb — a)
=

S(f, P) =

—11—1)

1;—[ﬂ+(1 l)(b ﬂ).ﬂ-i—
n

(iii) Imequality:

sup S(f.P)

< inf S(f,P)
pEP(D) peP(L

(iv) Monotone: A monotone function f: I = E

is Ricmann-Integrable over 1.

(v) Continuous: A continuous function f: [ —
R is Riemann-Integrable over I.

Theorem 8: Riemann-Integrable
A function f is Riemann-Integrable iff:

supS(f, P) = infS(f, P)
Py Py

More formally:

Ve3P : |S(f,P) - S(f.P) <e
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7.1 Properties - [ eselx) cot{a)de = — ese(x)
() [ f(z)de =0 [ ghyde = In | i)
() [Pef@)=c [’ flx e

Jlefle)=cf, flx) L ) A O e 1u|"‘,‘1"“”‘

(iit) J? f(z) + g(zide = [7 f(z)dx + [7 g(x)dx 4 Eon(z) Een ()

1 y

(i) J? fla)de = - [ [(x)de - J FaE e = —cot(z)
(v) f;" flx)dr = f;'f(.r]rh‘+j:'f(m)dx . fmrfx = tan(z)

(vi) [?edze = c(b—a) ok dp = )

(vii) If f(x) > g(z). then: ' H‘"'"“’ 1+_“""“‘1)

I3 F) 2 7 9@) I e = thiatsy
(viii) If m < f(x) Sh M, then: O aer coulis)
m(b—a) < [ flx)dz < M(b—a) J 15N T—sin(z)
i " d _ —sin(x)
< Jg S @)ldz Shc—olibe—o

- [sin(ax)de = _3_; cos(ax)

7.2 Common Integrals (—() T aeaaiin < Lan(os)
» cos(a = = sin xr

ic— ; ( dx 1y ( y
. [tan(a: ek EEtn
. fkd':c = kr J an NT) 1l'! cos(ar )
@ J 113“d1‘ + - 7 _7'_- . J b ,qm(a:r)d:r = —:,r rnc.{a—; ) —1- H!ll((l’f)

- [xcos(ax)dr = %a:sm(a;r) + ;]-_r cos(azx)

1 e -
zn (n—1)cm—=

« [ sinh(2)dr = cosh(z)
: f:n“‘dr:fidm= In |z|

- [ cosh(z)dr = sinh(z)

- fatde= T(n_ - [ tanh(x)de = In(cosh(z))

o [etde =ef « Jeoth(r)de = In|sinh(z)

- [log,(z)dz = zlog, (z) — xlog,(e) - [sinh~!(z)dr = zsinh~!(z) - vVa? + 1
Trigonometire - [cosh (z)dz = z cosh ) z= — 1

- [sin(x)de = -

- [ eus(x)dr = sin(x)

cos(x)

. [tanh '(z)dx = xtanh '(z) - :-[; In(1—x2)

. [coth™ Yz)dr = x coth ' (z) + -%ln(:.\:2 —1)

- [tan(z)dr = —In|cos(x)| = In | seclx)|

. Jout(g)de = In|sinlz) Logarithmic

- [sec(z)dz = In|sec(x) + tan(z)| - Jnlaz)dz = @li(azr) ~ =

- [ese(z)dx = —In | esc(x) + cot(x) - [xIn(az)dr = %(21"(“-’5) =1
o [sin~'(&)dr = zsin~ ! (z) = V1 - 22 - f hl%'?ild‘c = 1 (In(ax)?

¢ [eos™ Haz)de = wcos ™ {x) — V1I-—2z2 Exponential

. ftan~!(z)dz = xtan~}(z) - VI2In(l + 2?) - ferde = Lenm

« feot (x)de = zeot z) + vI2In(1 + 2?) o Jretde = (z—1)e*

- [sin?(a)de = é(r — sin(x) cos(z) . [ xet*dr = (; hic r?l") e

o [eos? (x)da %(J-' — sin(z) cos(x) Rational Functions
o [tan?(z)dr = tan(x) — = - f 7]:- 2/x
+ feot?(z)de = — cot(z) — 2 -l
s Pl dnide = BE0T . o g
; f.-‘.ecz(.r)(Lr = tan(x) ik nil 0 " ?
n+l
. fcs('z(.r)rb' = — cot(x) 4 fd?(.r +a)"dx = .a:+a:"_l I(:ié)}xu-a)
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’ thx—'u‘)u )

'fmd!‘—.—lnlﬂ"—tzl
o [ A rdr =z —atan~! ()

[ e = 2
a=+r= 2

o J ipdr =

xr
f wr® 4 brto

. fﬁ:dw:sin‘l (%)
[ mdz=2/7=a

o [arsin(aa)de -

- [ e sin(ar)dr = —ylomeh” (bsin(ax)

o Jazbay = ax _ adsbe e + d]

cad
“f ==
. fu 5w %ln|a.r+b
. der %tan '(2)

1 dr = 2 -1 2arih
% X = tan
| == prtn (7.—_,,‘)

‘l"lf\
de= = --b n‘.:.—bi

£
a=4mr=
3 .
— 102 |a® + 22|
3 |
L2 —
FETL e Inla— x|
% In |u.1:2 + ba + (:| -
— b tan -1 [ fazib
ay/dac-b? v dac—b*

Square Roots

. [Vr=ade = §(x —a)}

- VarThiz = (£ + %) Var+b

- [V Fade = tavaTFa+ $Inje + vzl +al
- VT = de = La \/_!“_—24.__&“1—1 (%)

- [zvE —adz = Za(x
- favaT taldr = 2(a® t )%
- [laz + b)ide =

o)t 42—l

T,;(ﬂ:l‘ + b)z

1 e e |
fmd.r-—ln|a"+ vz ia2|

x

VETa

» fﬁa;d:r:vxzia'-

Other

- ;"-—.r cos(er) + :‘g sin(enr)

- [ xcos(ax)dr = %r sin(ax) + ;l-;cos(m']

a-lb— acos(axr))

- [ eb* cos(ar)dr = mcb‘"’ (@ sin(ar) = beos(ax))
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7.3 U-Substitution

The substitution, u = g(r), du = g"_(.r)d;r is:
b a(b)
fa)g' s = [ fladu

gla)
7.4 Integration By Parts
b -]
[ f@g @iz = i @igtar [ r@gas

- u= f(z), v =g(r)
- du = f'{z)dz, dv=g'(z)dx

[[udr = uv — [vdu]. As a rule of thumb usc the
following order. u should be the function that comes
first beween: Logarthmic «» Inverse trig. — Alge-
braic (Az") — Trigunimetric = Exponential (k%).

7.5 Trig-Function Trick
For [ sin™(r)cos™(r)dz evaluate the following:

(i) Deg(mn) odd: strip one sin out and convert
the rest to cos with sin?(z) = 1 - cos?(z), then
use substitution on u = cos(x).

(ii) Deg(m) odd: strip one cos out and convert
the rest to sin with cos?(z) = 1 —sin?(x), then
use substitution on u = sin(z).

(iii) Deg(n) and Deg(m) both odd: use either
(i) or (ii).

(iv) Deg(n) and Deg(m) both even: use dou-
ble angle and/or half angle trig identities to
reduce the integral.

For [tan™(a)sec™ (r)dr evaluate the following:

(i) Deg(m) odd: strip one tan and one sec out,
and convert the rest to sec using tan?(x)
sec?(r) — 1, then use substitution on u =
sce(x).

(ii) Deg(m) even: strip 2 sec out and convert
the rest to tan with sec?(x) = 1—tan?(z), then
use substitution on u = tan(z).

(iii) Deg(n) odd and Deg(m) even: use either
(i) or (ii).

(iv) Deg(n) even and Deg(m) odd: Deal with
each integral differently.

7.6 Root-Trig Substitution Trick

If the integrals is one of the following roots use the
given substitution and formula to convert it to an
integral involving trig functions.
(i) va? —b%z2 — z = (—f;sin(u]._ with property
cos”(z) = 1 — sin?(x).

Flavio Schneider

(i) VBPr? —a® = z = 3 sec(u). with property
tan?(z) = 1 — sec?(x).

(ii) va® + b%2> =% = = § tan(u), with property
sec?(z) = 1 + tan?(z).

7.7 Rational Functions

Given an integral | g%d;r:

- For deg(P(x)) > deg(Q(z)), then apply a polyno-

mial cli\isiuu su that we get an equivalent integral
[A(z)+ dr where f —{— dx is easier to solve.

: For dey(P(r)) < a‘-eg(Q(.z:)). then factor Q(x) as

completely as possible and find the partial fraction
decomposition (P.F.D) of the rational expression.

1. Q(z) = (ax + b)(cz® + dr + ¢€), then the P.F.D.
A N )
wir +b ['.r'zlu':r-t

2. Q(J] = (az + b)". then the P.F.D. is:

..__._.2_2. ks | .
(ax<4h) (ax+b)?

7.8 TImproper Integrals
Convergent, if lim = & with k finite.
Divergent, if lim = £oc v D.N.E.

Infinite Limit:

(i) f f( :c)d.r = limsa oo fl f(z)dz
(i1) fh 2)dx = limpay— oo f, (z)dx
(iii) j f(.r)d.r fcx f(x)dr --j:‘ Sf(z)dx

provulcd that both integrals are convergent.
Discontinuous Integrand:
(i) Discontinuity at a:
I f(x)dr = tim, - [P f(z)dz
(i1) Discontinuity at b:
f: fle)de =iy - [P fle)de
(ii1) Discontinuity at a and b (a < ¢ < b):
f: flz)dz + I:’ Fflridz, if both convergent.

Convergence Tests:

- Comparison Test: If f(«) > g(u) > 0 on [u, 00/

then:

IF fx flz)dz converges = f"' gla)dr converges.
If [ g(z)dw diverges = )‘ f(z)dz diverges.
Useful: If a > 0 = jﬂ =5 -Ldz converges if p > 1
and diverges if p < 1.

- Limit Comparison Test: If f.g are continuous

on [a,oc| with lim, %—%) = L # o0, then:
.5 L F(x)lde converges & [ |g(x)|dz converges

- Absolute Converpgence:

S |f(x)|dzx converges = [ f(x) converges

Definition 7.2 (Antiderivative),
Let f:[a,b] — R be a function where

f(z) = F'(z) ¥z € |a.b]

then F is called the antiderivative of f.

Theorem 9: Mean Value Theorem

(Integration) Let f he continuous on [a,h],
then there exists a ¢ such that:

Q=5 [ ' flrydr

(f(c) —— er"g)

Theorem 10: Fundamental Theorem

Part 1: Suppose that f ib rontinuou:, on [a, b]

and F is defined as: F(z) := [* f(t)dt, then F
is differentiable on |a. b] and for all x € Ja, b:
F'(z) = f(z)

Part 2: Suppose that f is continuous on |a, b]
and F is the antiderivative of f, then:

h
[ f(z)dz = F(b) - F(a)

7.9 Derivative of Integrals

If we haw to evaluate the derivative of an integral
where F(r Jq(” Sf(t)dt, then by the first part
of the F‘lmdanwmal Theorem of Calculus (and the
Chain Rule) we have: F'(x) = f(g(x)) - g’'(2).

If F(r) = [75) ftyde = [9) fe)de— |7 fioyt,
then F'(x) = f(g(:))_; () = fF(h{x))R! ().
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8 Sequences

Definition 8.1 (Sequence). A sequence is
set of numbers in a specific order, more for-
mally: (an)32., is @ function [ : N — R where
f(n) = an.

Definition 8.2 (Convergence).
A sequence (an) is convergent to a value L
if imp 00 an = L, o1

Ye>0ANeNneN: (n>N=lapn—L| <¥)

If the limit doesn't exist (£oc or doesn’t con-
verge) we say that (a,) is divergent,

Inutition: If for any small number ¢ there is, we can
find a number N (¢) and L such that all puints of a,,
alter N arc at most at distance ¢ from L. the scrics
converges.

8.1 Convergence Criteria

(i) Linearity: If (an) converges to a. (bn) cun-
verges to b and k € N, then (kan + bn) con-
verges to ka =+ b.

Multiplication: If (a#,) converges to a and
(by ) converges to b then (an - by ) converges to
a-b.

Division: If (a,) converges to a and (b, ) con-

verges to b = 0 then (%) converges to -

{ii)

(iii)

(iv) Uniqueness: If (an) is convergent to a. then:

limn s+ac @r, = a is unique.

(v) Subsequence: If (a,) converges to a, then:
any subsequence (aqk) is also convergent to a.

(vi) Squeeze Theorem: If we have 3 convergent
sequences Hmp—oc @n = liMp—x ¢ = L, and
limy 00 b = b where a;; € by < ¢y then
b=1L.

(vii) Absolute: If (an) is convergent to a, theu:
|an] also converges and lim,, — |an| = |al.

(viii) Ratio Test: Let (an) be a sequence where
¥n € N:ap > 0, then if lim, 2—2-1 a
n
and & < 1; imMp—os @n = 0.
(ix) Boundedness: If (a,,) converges, then (ayn) is

bonnded.

(x) Momnotone Convergence: (ap) is monotone
then it's convergent 43 (ay) is bounded.
If (an) is increasing and bounded =
litiiy — ooty = sup{an : 1 € N}
If (an) is decreasing and bounded =
limp—oc @y = inf{an : n € N}

Flavio Schneider

8.2 Divergence Criteria
(i) (an) is divergent if it has two subsequence that
_ converge to different limits.
(ii) {an) is divergent if it has a divergent subse-
quence.

(iii) (an) is divergent if it's unbounded.

8.3 Monotonicity

Definition 8.3.
- A sequence is inereasing if:
Vn: an < Gn4t

- A sequence is decreasing if:
Vn: ay > apsd

- A scquence is monotonic if it's either in-
creasing or decreasing.

Lemma: Every sequence has a monotonic subse-

quence.

8.4 Boundedness

Definition 8.4.

- A sequence is bounded above if:
AM >0 eN: an < M

- A sequence is bounded below if:
An >0¥nelN: m<an

- A sequence is bounded if it's either bounded
above or below.

8.5 Cauchy Sequence

8.6 Accumulation Points

Definition 8.6.

A number a is an accumulation point of (an)
if there exists a subsequence (an,) that con-
verges lo a, or:

Ve >03dK € N: (k> K = |ap, —a| <€)

- Monotonicity: To

Definition 8.5.
A sequence {a, ) ts Cauchy if:

Ye>0INeN:Ymn>2N=l|ay —am| <e

Inutition: If for any small number € there is, we can
find a number N such that all points of a,, after N
are at most at distance ¢ from each other, the series
is Cauchv.

(i) Cauchy Convergence Criterion:
(an) is convergent <» it's Cauchy.
(ii) Cauchy Bounded: If (a,) is canchy, then it’s
also bounded.
(iii) Linearity: If (an) is Cauchy. (b,) is Cauchy

and k € N, then (ka,, + by) is also Cauchy.

The advantage is that we don’t have to find a limit
L to prove that the sequence converges.

(i) Convergence: If (a5 ) converges to L, then L
is the only accunmlation point of (uy).

(ii) Boundedness: If (1, ) is bounded, then it has
at least one accumulation point.

(iii) Divercence: If a, diverges, then it has no
accumulation point.

8.7 Strategy s

- Convergence: Treat (an) like a function and cal-

culate the limit, if it exists it’s convergent. If
it's a recursive sequence use the Monotone Con-
vergence Criteria hy first proving that it’s both
monotonic increasing/decreasing and then that it’s
hounded above if increasing and bounded below if
decreasing. To find the limit let lim, s a@n
limy; - @n-1 = L and solve L = ax by plugging
L inside of ay.

prove that the sequence
is monotonic pick a candidate between increas-
ing/decreasing aud solve the inequality with
n,@n+1 to prove your candidate. If the sequence
is recursive prove your candidate by induction.

- Boundedness: Try to change n in a, to make

the sequence as small as possible to find a lower
bound m, and similarly as big as possible to find
an upper bound M. Give the result in terms of

m < an, < M. If it’s a recursive sequence pick a
candidate of upper/lower bound and prove it hy
induction.
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9 Sequences of Functions

Definition 9.1. A sequence of a function
(fn) is a list of functions (f1. fa,...) such that
each fn maps a given subset of R into R:

(fn)uell- fu:ICR—R

9.1 Convergence

Definition 9.2. A sequence of a function
(fn) can converge to a function f(z) in two
different ways:

- Pointwise ifVr € I:

Jim_ fala) = /()

Uniformly if Ve e I:

lim sup|fa(z) — f(z)| =0, or:
n—fxlzel

Ye>03N eN: n> N = [falz)-flx)] <€

(i) Convergence: If (fn) converges uniformly,
then it also converges puintwise.

(ii) Continuity: If (f,,) converges uniformly, then

f is continuous.

Differentiability: If ( f,, ) converges pointwise

to f, and f}, converges uniformly to the func-

tion g on |a, b[, then f is differentiable on |a.b]

and f/ = g, or: limy—ec [}, = (limp—oo fn) =

fl'

Integrability: If a sequence of integrable

function f, converges uniformly to f on [a, b],

then f is integrable and:

i . b

lithn oo [ fn(2)d2 = [} iMoo (ful2))do =

1P r(z)de

(1)

(iv)



10 Series

Definition 10.1.

- A partial sum is the sum of the first n num-

bers of (ﬂn)ﬂ_l- or: 8y = E =1 @i

- An infinite series is the sum of all terms of

an infinite sequence (an)32 |, or:

o N
him: spr= E a; == lim E a;
n—+oo < N—oo 4

=1 i=1

10.1 Convergence

Definition 10.2 (Convergence).
An infinite series is called convergenl if:

0 n
Z a; converges < lim E ay erists
k=1 nEES e

4> (sn) converges

(i

k¥

) Bounded Convergence:
mately positive and (s, ) is abounded above,
then 37", a; converges, Otherwise the series

) Linearity:
c € R. then: 372 (ca; +b') =ca+b
Comparison: If 3% a, = a, 372
andVneNa, < bﬂ, then a < b.

= Z;‘f_\. a, VYN € N is convergent.

diverges to infinity.
Unbounded Divergence:
bounded and lim, - @y,

the series diverges to —oc

10.2 Absolute Convergence

Yy Rpai=0,32,b =b, and

obs = b

(iil) Unsorted Property: If 3% a, converges
absolutely, so does T‘ —0bn where by, is a bi-
jection of the oic_nu-ntb in an.

(iv) Sum Property: 3 °(a,+b,) converges ab-
solutely if both Y772 an and Y~ by, are ab-
solute convergent.

10.3 Common Series

n

(i) e =30, L;
(ii) sin(x) = L —(l( 1) '(27:1%
(ifl) cos(z) = _‘?f:u(—l)"%
(i) tan~22) = S o(-1)" 5
(V) === 2

(vi) In(l4u) =37 .1(—1)”%

10.4 Common Sums
i - nnsl) n?+n
. o 3

2

(1) \-'m

(i) oL, i =
(2 B it

Laj=

+3n2 +n

n+ 1) (2n+1) = 20’ =

%n(
% n3(n + 1)2

i =

Start Convergence: Y X a, is convergent

If (an) is ulti-

If (an) is un-
# 0, then if
L > 0 the series diverges to +oc and if L < 0

Definition 10.3 (Absolute Couvergence).
An absolute convergent series 3" an is a
convergent scries where also:

izid
2 an| converges
i=0

If 3" a, is convergent but ¥ lay| is divergent,
it's called conditionally convergent.

Definition 10.4 (Power Series).
A power series [ is a series of the form:

oo
il
flz)= L an(z — )™
n=>0
+ Convergence: the series converges abso-

lutely for 0 < |z — ¢/ < R. and diverges

otherwise. To calculate the radius of con-
vergence we use the ratio (or root) test:
5 1
‘ ! = limy o Jan|™ = L then
i a 1
R=—= lim L =
n—00 | @npil ]ilnn—pm |ﬂnl n

(i) Theorem: If %

b s

0%n.

(i) Inequality: |3-0% 4 an| < T2 lan

Flavio Schueider

Sy lan| converges so does

(i) Continuity: A Power Series f(r) is continu-
ous on {z: [z — ¢| < R}.

(ii) Differentiability: A Power Series f(z) is dif-
ferentiable in its radius of convergence 2 and:

0
'z) = Z n-ag(e-—c)" .

n=u

Definition 10.5 (Geometric Series),
A geometric series is a type of power servies
of the form:

- Convergence: converges

-r

and diverges otherwise.

- Partial Sum: the n'" partial sum of a ge-
e
metric series 18 s, = Al )

(1—7)

an.

(i)

(if)

(iii)

(v)

(vi)

(vii)

(viii)

5 Convergence Tests

Divergence Test: Let 3°° | a, be a serics

with lim, .+ a,, # 0 or undefined, then the

series diverges.

P-Test: The scrics E"_l W is convergent

if p > 1 and divergent if p <

Comparison Test: Let

mately positivc- such that dN ¢

0 < ay < by. then:

If 377 | bn is convergent then ¥~

convergent,

If 3771 an is divergent then 32, by, is also

d]\erﬂent

Limit Comparison Test: Let (a,). (b,.) be

posllno sequences and assume limg -~ E"’ ==
s then! HO < L < 65t 327

< }::‘_1 by converges,

(“11 ) (bn) be ulti-
Nvn> N :

:_u-—l ap is also

1(1” converges

[fL=0: 322, by converges => 37° , an cou-
verges.

If L= oot 3 50, b diverges = Y8 | 6, di-
verges.

Root Test: Let }°° ,an be a smies with
(an) ultimately and lim, s~ ;anI =5L2>0
then:

If 0 < L < 1 the series converges absolutely.
If 1 < L < ¢ the series diverges.
If L = 1, this test is inconclusive.

Ratio Test: Let > ,a, be a se
ries with (an) ultimately positive and
limy; e I”"' L. then:

an

If L < 1 the series converges absolutely.

If 1 < L < ~ the series diverges.

If L — 1 the test is inconclusive.

Integral Test: If f(n) — a, with f(x) contin-
uous,eventually positive and decreasing, then:
Ji© flz)dr converges <» 370, a, converges.

—ani=
Alternating Series Tnst. Let 32, dn
be a series where a, = (-1)"b, or an =

(=1)""1h,. then:
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If lim, o b,y = 0 and b, is decreasing =+ the

series co nverges.

10.6 Convergence Strategy

1.

s

-~ &

. Comparison Test: If it's

Divergence Test: If it's easy to see that the

limit is not 0.

. P-Test /Geometric Series: If it’s of the form

T i Xar™ or T et
similar to a p-series

or geometric series.

Limit Comparison Test: If it’s a rational ex-
pression with polynomials with positive terms.

. Root Test: If can be written as a,, = (b,)".
. Ratio Test: If it contains factorials or ¢”.

. Alternating Series Test: If can be written as

an = (—1)"7n, if ¢ ¢ {0,1} we have to ma-
nipulate it to make it 0 or 1 (e.g.: (=1)"*12 -
(17 (-1 = {~-1)")

. Integral Test: If f(n) = ay is easy to inte-

grate and f is positive and decreasing (ev.
derivative).

use

10.7 Value Calculation

To calenlate the value of a series there are two ways:

1

Find the series representation as a Geomet-
ric Power Series. and calcualte its convergence
value. Some tricks are: wmultiply the series by a
numbcr, strip out the first terms (how many arc
necessary), subtract the starting series to the
obtained one to balance the multiplied term.
By repeating this process we might be able to
gel Lo a geometric series.

. If the series converges absolutley we can rear-

range the sum such that they cancel each other,
to do so we have to find the partial fraction de-
composition of the series so that there are sub-
tracting terms. Subsequently we will evaluate
enough terms to find a repeating pattern (fac-
toring a constant out might help) such that they
cancel ont indefinitely. Theu we will rewrite the
series as a partial sum 3 i—qn with all the terms
that do not cancel (at thr beginning and end
of the infinite series) and evaluate the limit to
find its value.

11 Other

11.1

Given a parametric curve where &
Yy = g(t) defined on an interval ¢ ¢

Length of a curve

f(t) and
[a.b] then the

length of the curve is evaluated as follows:
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