Kenmerk: EWI2021/TW/MOR/MU/Mod7/Exam1

Exam 1 DM, Module 7, Codes 202001360 & 202001364 Discrete Mathematics

Friday, March 28, 2025, 13:45 - 15:45

Answers to questions 1-5 need to be motivated, arguments and proofs must be complete. You are allowed to use a handwritten cheat sheet (A4, both sides) during the exam.

For information: This is the DM part of the exam; the entire exam consists of two parts:

Algorithms & Data Structures (ADS) 1h

(30 points) next Monday's test

Discrete Mathematics (DM)

2h

(60 points) today's test

The total is 30+60=90 points. Your grade is 1+0.1x, x being the number of points, rounded to one digit. That means, you need 45 points to get a 5.5.

- 1. (4+5 points)
 - (a) Consider $a \in \mathbb{Z}_{>0}$, and a prime number p. Prove that if $p \nmid a$ then gcd(a, p) = 1.
 - (b) Consider $a,b,c\in\mathbb{Z}_{>0}$ with $\gcd(a,b)=1$ and a|c,b|c. Prove that ab|c.
- 2. (8 points) Prove that any graph G=(V,E) consisting of k connected components, is acyclic (i.e., contains no cycle) if and only if |E| |E| = k.
- 3. (10 points) Consider a simple, capacitated network G=(V,E,c), where $s,t\in V$, and c(e)=1 for all $e\in E$ are the (unit) the edge capacities.

Suppose you are given a maximum (s,t)-flow f with $\mathit{val}(f) \geq 2$. Suggest how to identify, in O(|V| + |E|) time, an edge $e' \in E$, such that after reducing the capacity of e' by one unit, the maximum (s,t)-flow f^* in the remaining network satisfies $\mathit{val}(f^*) = \mathit{val}(f) - 1$.

Briefly explain (i) why your suggested algorithm is correct (ii) why it achieves the desired running time.

[Hint: You may want to use the (s,t)-flow f as well as the residual graph for G_f with respect to f.]

- 4. (5+4 points)
 - (a) Compute the solution to the recurrence relation

$$a_n - 2a_{n-1} + a_{n-2} = 2^n$$
 $(n \ge 2)$ with $a_0 = 25$ and $a_1 = 16$.

(b) Let b_n denote the number of ways that the set $\{1,2,\dots n\}, n\geq 1$, can be partitioned into two non-empty subsets. Find a recurrence relation for b_n . (You do not need to solve this recurrence relation.)
(9 points) Assume that Alice has published modulus $n=77$, and exponent $e=7$. Bob sends ciphertext $C=8$ to Alice. You are eavesdropper Eve and you are interested in Bob's secret message M . Compute Bob's secret message M from ciphertext C . Write down all of the computational steps that you need to perform in order to obtain Bob's secret message M .
(3 points each) For each of the following five claims, decide if true or false or if you would rather not give an answer. A correct answer gives 3, an incorrect answer -3 and not giving an answer 0 points (minimum total number of points for Question 6 is 0 points). Instead of guessing, it may be better not giving an answer.
(a) Consider a simple graph $G=(V,E)$ with edge weights $w_e\geq 0$, $e\in E$. If there is an edge e such that $w_e< w_{e'}$ for any edge $e'\in E$ with $e'\neq e$ (in other words, e has weight strictly less than any other edge in the graph), then e must be in every minimum spanning tree of G .
True⊠ False□ I prefer to not give an answer□
(b) Consider a capacitated network $G=(V,E,c)$, where V is the set of vertices, E is the set of directed edges, and $c:E\to\mathbb{Z}_\geq 0$, are the edge capacities. Let f be some (s,t) -flow in G that is not a maximum flow, and let $\mathit{val}(f)$ be its value. Then any (s,t) -cut (S,T) of G must have capacity $\mathit{cap}(S,T)) \geq \mathit{val}(f)$.
True□ False□ I prefer to not give an answer□
(c) Consider an undirected, simple graph $G=(V,E)$ with edge weights $w:E\to\mathbb{R}$, and a minimum spanning tree T on G . Then for every pair of vertices $u,v\in V$ the shortest (u,v) -path in G must be contained in (V,T) .
True

False \dots \boxtimes I prefer to not give an answer \dots \square

5.

6.

(d)	Consider a complete bipartite graph $G=(V_n\cup V_m,E)$ with V_n and V_m being the two sides of the bipartition. Then G is Eulerian if and only if $ V_n + V_m $ is even. [Reminder: A complete bipartite graph is a simple undirected graph whose vertices can be partitioned into two subsets V_n and V_m such that no edge has both endpoints in the same subset, and every possible edge that could connect vertices in different subsets is part of the graph.]							
	True□ False□ I prefer to not give an answer□							
(e)) Consider the depicted matching ${\cal M}$ and corresponding preference lists. Then ${\cal M}$ is a stable matching.							
		$x >_a y >_a z$						
	b y	$y >_b x >_b z$ $x >_c y >_c z$						
		$b >_x a >_x c$ $a >_y b >_y c$						
	[Reminder: $p>_i q$ indicates that i prefers to be matched with p	$a >_z b >_z c$ o over $q.$						
	True							

					•
				*	
	1				
			1		
					r

.