

Examination: Continuous Optimization

3TU- and LNMB-course, Utrecht December 22, 2009, 13.00-16.00

Ex. 1

0)

X T a a T x = (aTA) 2 >0

- **2.** (a) Given $a \in \mathbb{R}^n$, show that the matrix aa^T is positive semidefinite.
- 3 (b) Show that a symmetric matrix $A \in \mathbb{R}^{n \times n}$ is positive semidefinite if and only $A \bullet C \geq 0$ holds for all semidefinite matrices C.

 (Here, for symmetric matrices, $A \bullet C$ denotes the "inner product", $A \bullet C = \sum_{i,j} a_{ij} c_{ij}$)

Ex. 2 Consider the convex problem

(CO)
$$\min f(x)$$
 s.t. $g_j(x) \le 0, j = 1, ..., m, x \in \mathbb{R}^n$

with convex functions $f, g_j \in C^1(\mathbb{R}^n, \mathbb{R})$. Suppose a feasible point \overline{x} satisfies the KKT-conditions (Karush-Kuhn-Tucker) with a multiplier vector $\overline{y} \geq 0$.

- **5** (a) Show that $(\overline{x}, \overline{y})$ is a saddle point for the Lagrangian function L(x, y) of (CO).
- **3** (b) Show also that $(\overline{x}, \overline{y})$ is a solution of the Wolfe-Dual (WD) of (CO).

Ex. 3 Let $f_i: C \to \mathbb{R}$, $i \in I := \{1, ..., m\}$ be convex functions on the convex compact set $C \subset \mathbb{R}^n$. Define for $x \in C$ the function f by:

$$f(x) = \min \left\{ \sum_{i=1}^{m} \lambda_i f_i(x_i) \mid x = \sum_{i=1}^{m} \lambda_i x_i, \sum_{i=1}^{m} \lambda_i = 1; x_i \in C, \lambda_i \ge 0 \ \forall i \in I \right\}$$

Show that f(x) is the greatest convex function g(x) such that $g(x) \le f_i(x) \ \forall x \in C$ and $\forall i \in I$, in the following way:

(a) With the epigraphs epi (f_i) we consider the set $F := \text{conv } \{\text{epi } (f_i), i = 1, ..., m\}$. Show now that F = epi (f) holds and conclude that f is convex on C. (By definition, $conv\{\text{epi } (f_i), i = 1, ..., m\}$ is the set

$$\{\sum_{i=1}^m \lambda_i z_i \mid \sum_{i=1}^m \lambda_i = 1; \ \lambda_i \ge 0 \ , z_i \in \operatorname{epi}(f_i), i \in I\},\$$

i.e. the set F is the smallest convex set containing all sets $epi(f_i), i = 1, ..., m$.)

Show that $f(x) \leq f_i(x) \forall x \in C$ and $\forall i \in I$ holds and that f is the greatest convex function with this property (i.e., for all convex functions g(x) such that $g(x) \leq f_i(x) \forall x \in C$ and $\forall i \in I$, we have $g(x) \leq f(x)$, $\forall x \in C$).

- **Ex.4** We consider the unconstrained minimization problem: $\min_{x \in \mathbb{R}^n} f(x)$ with $f \in C^1(\mathbb{R}^n, \mathbb{R})$.
- (a) Let H be a positive definite (real) $n \times n$ matrix and let $\nabla f(x_k) \neq 0$. Show that $d_k = 0$ $-H\nabla f(x_k)$ is a descent direction for f in x_k .
- (b) Given a (non-positive definite) symmetric (real) $n \times n$ matrix A, show that there is a number σ_0 such that for all $\sigma > \sigma_0$ the matrices $A + \sigma I$ are positive definite. (Here, I is the unit matrix). Hint: Consider the number $\min_{\|x\|=1} x^T Ax$
- Ex. 5 Consider the unconstrained minimization problem with the quadratic function $q(x) = \frac{1}{2}x^T A x + b^T x$, where A is a positive definite matrix. Determine the (global) minimizer \overline{x} of q and show that for any starting point x_0 the Newton iteration computes the minimizer \overline{x} in one step.
- **Ex. 6** Consider the problem (in connection with the design of a cylindrical can with height h, radius r and volume at least 2π such that the total surface area is minimal):

(P):
$$\min f(h,r) := 2\pi(r^2 + rh)$$
 s.t. $-\pi r^2 h \le -2\pi$, (and $h > 0, r > 0$)

- \P (a) Compute a (the) solution $(\overline{h}, \overline{r})$ of the KKT conditions of (P). Show that (P) is not a convex optimization problem.
- 2 (b) Show that the solution $(\overline{h}, \overline{r})$ in (a) is a local minimizer. Why is it the unique global solution?

Hint: Use the sufficient optimality conditions

Ex. 7 We consider the constrained program

$$(P) \qquad \min \ f(x) \quad \text{s.t.} \quad x \in \mathcal{F} \quad \text{where} \quad \mathcal{F} := \{x \in \mathbb{R}^n \mid g_j(x) \leq 0, j \in J\}$$

with $f, g_j \in C^1(\mathbb{R}^n, \mathbb{R})$ and $J = \{1, \dots, m\}$. Let d_k be a strictly feasible descent direction in $x_k \in \mathcal{F}$, i.e.,

$$\nabla f(x_k)^T d_k < 0$$
, $\nabla g_j(x_k)^T d_k < 0$, $\forall j \in J_{x_k}$

holds. Show that for any t > 0, t small enough, we have:

$$f(x_k + td_k) < f(x_k)$$
 and $x_k + td_k \in \mathcal{F}$

Points: 36+4=40

1	a b	:	2	2	a b	:	3	3	a b	:	3	4	a b	:	2 3	5	:	4	6	a b	:	4 2

A copy of the lecture-sheets may be used during the examination. Good luck!