Practice Exam: Continuous Optimization

1. Consider the problem min,{x? : x > 1}. For a parameter p > 0, this problem can
be approximated by the unconstrained optimization problem
. 2
min 2 — pln(zr — 1)
(A)
s.t. x> 1.
Find the optimal solutions to (A) as a function of p > 0, and find the limit of these
optimal solutions as p — 07.

Solution: Let h, : Ry, — R be given by h,(z) = 2* — pln(z — 1). We then
have
W(r)=2z—plx—1)"=(x—-1)" (22" -2z —p),
-2
ho(x) =2+ p(x —1)7" > 0.

Therefore h, is a convex function, and thus is minimized at x, € R, when
W (xz,) =0, or equivalently 0 = 222 — 2z, — p.

Therefore z, = 3 £ /T +2p. As x, € Ry, we have that the optimal solution
to (A) is given by z, = 1 + 3/T+ 2p.

We then have lim, o+ x, = 1.

2. Consider a closed nonempty set C C R™ and a function f : R” — R defined to be
the distance to the set for some given norm, i.e.

f(x) =min{|x —yl[l -y € C}.

Prove that if C is a convex set then f is a convex function.
[You may assume that the minimum defining f is attained.]

Solution: Consider arbitrary u,v € R™ and arbitrary 6 € [0, 1]. There exists
y,z € C such that f(u) = |ju—y|| and f(v) = ||v — z||. We then have

0f(u) + (1 =0)f(v) =0llu—yl+ (1 -0)v—z
Z [0(u—y)+ (1 —-0)(v—2)
= ||(bu+ (1 —6)v) — (0y + (1 — 0)z)
> f(Ou+ (1 —0)v)

The last inequality follows from the definition of f and the fact that if C is a
convex set then fy + (1 — )z € C.

NB A common error made was to say that for two functions g,h : R* — R
we have ming{g(x) + h(x)} < mine{g(x)} + min,{h(x)}. This is incorrect,
and a simple counter example to this is given by g,h : R — R, g(x) = 22,

[3 points]

[3 points]
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h(z) = (z — 2)?. We then have min{g(z) + h(x)} = min{2(z — 1)? + 2} = 2,
mine{g(x)} = 0 = min,{h(x)}.

We do always have the inequality mine{g(x)+h(x)} > mine{g(x)}+min{h(x)},
but this does not help in this problem.

3. For a fixed parameter a € R, consider the function f,(x) = exp(z; +z2) +ax? + 3.

(a) For what values of the parameter o € R is f, a convex function? [3 points]

From now on consider having o = 1 (for which we have that f, is a convex function).

(b) By considering the function at x = 0 = (8), show that fi(y) > 1+ vy + y2 [2 points]
for all y € R2.

(c) Give the direction of steepest descent of f; at x = 0. [1 point]

(d) Give the Newton direction of f; at x = 0. [2 points]

[These directions do not need to be normalised.]

Solution:
(a)
_ (exp(z + 22) + 2014
VIx) = ( exp(zy + ) + 423 )

exp(z1 + x2) + 2 exp(x1 + xg)
exp(z1 + T2) exp(z1 + ) + 1223

Vif(x)

If @ > 0 then V?f(x) is a diagonally dominant matrix, and thus it is also
positive semidefinite, and f is a convex function.

If @ < 0 then for z1 + 23 < In(—2a) we have (V2f(x));; < 0, and thus
V2 f(x) is not positive semidefinite when z; + x5 < In(—2a), and f is not
a convex function over R2.

(b) We have f(0) =1 and Vf(0) = G) , and by Theorem 1.27 we get
Fy) = f(0) + VF(0) (y = 0) =1+ 1 + 1.

(c¢) The direction of steepest descent is ds = =V f(0) = (:D :
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(d) Letting d,, be the Newton direction, we have

vio-(] ). -
a, =1 rovio -3 (1 ) (5) = (%)

4. Consider the problem

min 42, + 3
X

s.t. oy > a7 (B)
x € R?.
(a) Show that problem (B) is a convex problem. [2 points]
(b) Does Slater’s condition hold for problem (B)? (You must justify your answer.) [1 point]
(c) Find the KKT point(s) for problem (B). [3 points]
(d) What is the global minimizer for problem (B), and prove that this minimizer [3 points]
is a local minimizer of order 2.

(e) Formulate and solve the Langrangian Dual problem to problem (B). [4 points]

Solution:

(a) We have

fo ekt Vi = (yn). V= (g 3) =0

o) =t Va0 = (21). ek (3 o) =0

b) Yes, for example at the point x = 0 we have g(x) = —1 < 0.
1

(c) We require x € R? and \ € R such that

A >0, (1)

g9(x) <0, (2)
Ag(x) =0, (3)
Vf(x) =-AVg(x) (4)

Equation (4) is equivalent to (Qi > = (_2;61)\), or4 = —2x\ and 2xy =
2

A. From (1), this implies that A > 0 (and x; < 0). From (3) this implies
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that g(x) = 0, or equivalently x5 = z?. Therefore X = 2z = 22? and
4=-2rA=—423. Thus 28 = -1, 2y = -1, 2o =22 = 1, A = 219 = 2.

Thus the only KKT point is x* = (_11), with dual multiplier A = 2.

As we have a convex problem, any KKT point is a global minimizer, thus
. -1\ . e
x'=|, |sa global minimizer.

Considering the multiplier A = 2 at x*, we have

4
V2f(x) + AVZg(x) = (O g) .
This is a positive definite matrix, and thus
d" (V2f(x)+AV?g(x))d >0

for all d € R?\ {0}, and by Theorem 5.14 we have that x* is a strict local
minimizer of order 2.

We have
L(x;y) = f(x) +y9(x)
= day + 75 + y(23 — x9)
= yx? + 4z, + x% — YTa,
U(y) = inf L(x;y).

If y = 0 then L(x;0) = 4x; + 22, and considering z; — —oo0 we get
¥(0) = —oc.
If y > 0 then

2\’ 2 4

L(X;y)zy(xﬁr;) +(:c2—g> —;—yz,
4 g

¥(y) e

The dual problem is thus

max — — — — s.t. y>0.

The Lagrangian dual is always a convex optimisation problem.

We have ¢/(y) = 4y~2 — 3y = 2y~%(8 — y®), and the problem is maximised
when ¢'(y) = 0.

Therefore the solution to the dual problem is y = 2, giving an optimal
value of —3.
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5. Let M (z,y) == (f ;) forz,y € Rand let A\(M(z,y)) := max{|\ (M (z,y))|, | \a(M(x,y)|}

be the absolute value of the eigen value of M(x,y) of largest absolute value.

(a) Formulate a semidefinite program that solves the problem of finding =,y € R [1 point]
minimizing A(M (z,y)).

(b) Formulate the corresponding dual semidefinite program. [3 points]

(c) Show that z = y = 0 is the optimal solution by exhibiting a dual solution [2 points]

whose value is equal to A(M(0,0)).

Solution:

(a) We recall that A(M(z,y)) < t iff the eigen values of M(z,y) are in the
range [—t,t] iff —tly <X M(z,y) < tly, where I is the 2 x 2 identity.
Therefore, the semidefinite program minimizing A(M (z,y)) is

min ¢
z,y,t

t—x 0 01

>
(50 =(00)
t+x 0 o 0 -1 .
0 t+y) —\—-1 0
For the purpose of taking duals, the above program can be equivalently

written as

mirtl O-z+0-y+1-1
I7y7
-1 0 0 0 10 0 1
—
x(o 0)+y<0 —1)”(0 1) = (1 o)
10 0 0 10 0 -1
—
"”(o o)“’(o 1)”(0 1> = <—1 0)'
(b) Letting X', X? > 0 denote the “multipliers” for the first and second con-

straint respectively, the corresponding dual semidefinite program can be
expressed as

max(X", ((1) (1)>> (X, (_01 _01)>
<X17(_01 8)>+<X2, ((1) 8)):0 (coefficient of z)
<X1,(8 _01)>+<X2, (8 ?)):0 (coefficient of y)
<X1,<(1) (1)>)+(X2,((1) (1))>:1 (coefficient of ¢)

X'=0,X%>0.
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Let X! = (a1 bl) and X? = (a2 62), note that the first equality

by by ¢
constraint enforces a; = ao, the second enforces ¢; = ¢y, and the last
enforces a; + ¢; + ag + ¢co = 2(a; + ¢;) = 1. The dual can therefore be
simplified to

max 2(b1 — b2)

a,¢,b1,b2

a+c=1/2
<§1 b;) to,(lj‘z bj) =0
For = y = 0, we see that the spectral decomposition is
((1) é) ~ 1 G;g) (1/v2 1/v2) +—1- (‘11/%5) (~1/v2 1/V2).

Therefore, the eigen values of M(0,0) are —1 and 1. In particular,
A(M(0,0)) = 1. The dual solution of same value is a = ¢ = 1/4, by = 1/4,
by = —1/4. The value of this solution is 2(b; — be) = 1. Furthermore it is
1/4 +1/4
+1/4 1/4
(1/4)? = (£1/4)2

feasible, since ) >~ 0, since the diagonal is non-negative and

6. Let yq,...,yn € R". Examine the optimization problem:

N

. 2

min Z; I — yill3
1=

(a) Prove that x* = 3% y;/N is the optimal solution.

(b) Show that x* is a local minimum of order 2.

[2 points]
[1 point]
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Solution: Letting f(x) = S_n | ||x — yil3, and x* = 32V, y; /N, we sce that

I = x") = (x" = ya) I3

M-

f(x) =

1

1

(e ="l = 2(x" — y) "(x = x") + [x" = yi13)

I
.MZ

1

7
N N

Nl = x5+ ) lx" = yills =200 _(x" = yi)T(x = x")

i=1 i=1

N

= Nlx =x"[5+ Y IIx" = yill; — 2N (x" = x")T(x = x")
=1
N

= Nllx —x"|5+ > x* —yill3

i=1

(a) By the representation above, we see that f(x) — f(x*) = N||x — x*||%, and
hence x* is clear the unique global minimum.

(b) We clearly also have f(x) — f(x*) > a||x — x*||2 for « = N, and hence x*
is a local minimum of order 2 as well.

7. (Automatic additional points) [4 points]

Question: |1 {23 ] 4 |5]6| 7| Total
Points: 313[8[13|6(3[4] 40

A copy of the lecture-sheets may be used during the examination. You
may use any results from the lecture slides in your answers (Lemmas, The-
orems, Corollaries, Exercises, etc.), however you should reference the result.

Hints:
K AN 1 c —b
“\b ¢ T ac—b \=b a

2. (Z i) =0 iff a,c >0 and ac > b*.

3. A norm || e on R"™ has the following properties:
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(a) ||Xx]|| = || |x]| for all X € R, x € R™;
(0) lIx+yl < x| +[lyll for all x,y € R";
(c) ||x|]| >0 for all x € R™\ {0}.



