
Practice Exam: Continuous Optimization

1. [3 points]Consider the problem minx{x2 : x ≥ 1}. For a parameter ρ > 0, this problem can
be approximated by the unconstrained optimization problem

min
x

x2 − ρ ln(x− 1)

s. t. x > 1.
(A)

Find the optimal solutions to (A) as a function of ρ > 0, and find the limit of these
optimal solutions as ρ→ 0+.

Solution: Let hρ : R++ → R be given by hρ(x) = x2 − ρ ln(x − 1). We then
have

h′ρ(x) = 2x− ρ(x− 1)−1 = (x− 1)−1
(
2x2 − 2x− ρ

)
,

h′′ρ(x) = 2 + ρ(x− 1)−2 > 0.

Therefore hρ is a convex function, and thus is minimized at xρ ∈ R++ when
h′(xρ) = 0, or equivalently 0 = 2x2ρ − 2xρ − ρ.

Therefore xρ = 1
2
± 1

2

√
1 + 2ρ. As xρ ∈ R++, we have that the optimal solution

to (A) is given by xρ = 1
2

+ 1
2

√
1 + 2ρ.

We then have limρ→0+ xρ = 1.

2. [3 points]Consider a closed nonempty set C ⊆ Rn and a function f : Rn → R defined to be
the distance to the set for some given norm, i.e.

f(x) = min
y
{‖x− y‖ : y ∈ C}.

Prove that if C is a convex set then f is a convex function.
[You may assume that the minimum defining f is attained.]

Solution: Consider arbitrary u,v ∈ Rn and arbitrary θ ∈ [0, 1]. There exists
y, z ∈ C such that f(u) = ‖u− y‖ and f(v) = ‖v − z‖. We then have

θf(u) + (1− θ)f(v) = θ‖u− y‖+ (1− θ)‖v − z‖
≥ ‖θ(u− y) + (1− θ)(v − z)‖
= ‖(θu + (1− θ)v)− (θy + (1− θ)z)‖
≥ f(θu + (1− θ)v)

The last inequality follows from the definition of f and the fact that if C is a
convex set then θy + (1− θ)z ∈ C.
NB A common error made was to say that for two functions g, h : Rn → R
we have minx{g(x) + h(x)} ≤ minx{g(x)} + minx{h(x)}. This is incorrect,
and a simple counter example to this is given by g, h : R → R, g(x) = x2,
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h(x) = (x − 2)2. We then have min{g(x) + h(x)} = min{2(x − 1)2 + 2} = 2,
minx{g(x)} = 0 = minx{h(x)}.
We do always have the inequality minx{g(x)+h(x)} ≥ minx{g(x)}+minx{h(x)},
but this does not help in this problem.

3. For a fixed parameter α ∈ R, consider the function fα(x) = exp(x1+x2)+αx21+x42.

(a) [3 points]For what values of the parameter α ∈ R is fα a convex function?

From now on consider having α = 1 (for which we have that fα is a convex function).

(b) [2 points]By considering the function at x = 0 =

(
0
0

)
, show that f1(y) ≥ 1 + y1 + y2

for all y ∈ R2.

(c) [1 point]Give the direction of steepest descent of f1 at x = 0.

(d) [2 points]Give the Newton direction of f1 at x = 0.

[These directions do not need to be normalised.]

Solution:

(a)

∇f(x) =

(
exp(x1 + x2) + 2αx1
exp(x1 + x2) + 4x32

)
∇2f(x) =

(
exp(x1 + x2) + 2α exp(x1 + x2)

exp(x1 + x2) exp(x1 + x2) + 12x22

)
If α ≥ 0 then ∇2f(x) is a diagonally dominant matrix, and thus it is also
positive semidefinite, and f is a convex function.

If α < 0 then for x1 + x2 < ln(−2α) we have (∇2f(x))11 < 0, and thus
∇2f(x) is not positive semidefinite when x1 + x2 < ln(−2α), and f is not
a convex function over R2.

(b) We have f(0) = 1 and ∇f(0) =

(
1
1

)
, and by Theorem 1.27 we get

f(y) ≥ f(0) +∇f(0)T(y − 0) = 1 + y1 + y2.

(c) The direction of steepest descent is ds = −∇f(0) =

(
−1
−1

)
.
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(d) Letting dn be the Newton direction, we have

∇2f(0) =

(
3 1
1 1

)
, [∇2f(0)]−1 =

1

2

(
1 −1
−1 3

)
,

dn = −[∇2f(0)]−1∇f(0) = −1

2

(
1 −1
−1 3

)(
1
1

)
=

(
0
−1

)

4. Consider the problem

min
x

4x1 + x22

s. t. x2 ≥ x21 (B)

x ∈ R2.

(a) [2 points]Show that problem (B) is a convex problem.

(b) [1 point]Does Slater’s condition hold for problem (B)? (You must justify your answer.)

(c) [3 points]Find the KKT point(s) for problem (B).

(d) [3 points]What is the global minimizer for problem (B), and prove that this minimizer
is a local minimizer of order 2.

(e) [4 points]Formulate and solve the Langrangian Dual problem to problem (B).

Solution:

(a) We have

f(x) = 4x1 + x22, ∇f(x) =

(
4

2x2

)
, ∇2f(x) =

(
0 0
0 2

)
� O,

g(x) = x21 − x2, ∇g(x) =

(
2x1
−1

)
, ∇2g(x) =

(
2 0
0 0

)
� O.

(b) Yes, for example at the point x =

(
0
1

)
we have g(x) = −1 < 0.

(c) We require x ∈ R2 and λ ∈ R such that

λ ≥ 0, (1)

g(x) ≤ 0, (2)

λ g(x) = 0, (3)

∇f(x) = −λ∇g(x) (4)

Equation (4) is equivalent to

(
4

2x2

)
=

(
−2x1λ
λ

)
, or 4 = −2x1λ and 2x2 =

λ. From (1), this implies that λ > 0 (and x1 < 0). From (3) this implies
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that g(x) = 0, or equivalently x2 = x21. Therefore λ = 2x2 = 2x21 and
4 = −2x1λ = −4x31. Thus x31 = −1, x1 = −1, x2 = x21 = 1, λ = 2x2 = 2.

Thus the only KKT point is x∗ =

(
−1
1

)
, with dual multiplier λ = 2.

(d) As we have a convex problem, any KKT point is a global minimizer, thus

x∗ =

(
−1
1

)
is a global minimizer.

Considering the multiplier λ = 2 at x∗, we have

∇2f(x) + λ∇2g(x) =

(
4 0
0 2

)
.

This is a positive definite matrix, and thus

dT
(
∇2f(x) + λ∇2g(x)

)
d > 0

for all d ∈ R2 \ {0}, and by Theorem 5.14 we have that x∗ is a strict local
minimizer of order 2.

(e) We have

L(x; y) = f(x) + y g(x)

= 4x1 + x22 + y(x21 − x2)
= yx21 + 4x1 + x22 − yx2,

ψ(y) = inf
x
L(x; y).

If y = 0 then L(x; 0) = 4x1 + x22, and considering x1 → −∞ we get
ψ(0) = −∞.

If y > 0 then

L(x; y) = y

(
x1 +

2

y

)2

+
(
x2 −

y

2

)2
− 4

y
− y2

4
,

ψ(y) = −4

y
− y2

4
.

The dual problem is thus

max
y

− 4

y
− y2

4
s. t. y > 0.

The Lagrangian dual is always a convex optimisation problem.

We have ψ′(y) = 4y−2− 1
2
y = 1

2
y−2(8− y3), and the problem is maximised

when ψ′(y) = 0.

Therefore the solution to the dual problem is y = 2, giving an optimal
value of −3.
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5. LetM(x, y) :=

(
x 1
1 y

)
for x, y ∈ R and let λ(M(x, y)) := max{|λ1(M(x, y))|, |λ2(M(x, y)|}

be the absolute value of the eigen value of M(x, y) of largest absolute value.

(a) [1 point]Formulate a semidefinite program that solves the problem of finding x, y ∈ R
minimizing λ(M(x, y)).

(b) [3 points]Formulate the corresponding dual semidefinite program.

(c) [2 points]Show that x = y = 0 is the optimal solution by exhibiting a dual solution
whose value is equal to λ(M(0, 0)).

Solution:

(a) We recall that λ(M(x, y)) ≤ t iff the eigen values of M(x, y) are in the
range [−t, t] iff −tI2 � M(x, y) � tI2, where I2 is the 2 × 2 identity.
Therefore, the semidefinite program minimizing λ(M(x, y)) is

min
x,y,t

t(
t− x 0

0 t− y

)
�
(

0 1
1 0

)
(
t+ x 0

0 t+ y

)
�
(

0 −1
−1 0

)
.

For the purpose of taking duals, the above program can be equivalently
written as

min
x,y,t

0 · x+ 0 · y + 1 · t

x

(
−1 0
0 0

)
+ y

(
0 0
0 −1

)
+ t

(
1 0
0 1

)
�
(

0 1
1 0

)
x

(
1 0
0 0

)
+ y

(
0 0
0 1

)
+ t

(
1 0
0 1

)
�
(

0 −1
−1 0

)
.

(b) Letting X1, X2 � 0 denote the “multipliers” for the first and second con-
straint respectively, the corresponding dual semidefinite program can be
expressed as

max〈X1,

(
0 1
1 0

)
〉+ 〈X2,

(
0 −1
−1 0

)
〉

〈X1,

(
−1 0
0 0

)
〉+ 〈X2,

(
1 0
0 0

)
〉 = 0 (coefficient of x)

〈X1,

(
0 0
0 −1

)
〉+ 〈X2,

(
0 0
0 1

)
〉 = 0 (coefficient of y)

〈X1,

(
1 0
0 1

)
〉+ 〈X2,

(
1 0
0 1

)
〉 = 1 (coefficient of t)

X1 � 0, X2 � 0.
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Let X1 =

(
a1 b1
b1 c1

)
and X2 =

(
a2 b2
b2 c2

)
, note that the first equality

constraint enforces a1 = a2, the second enforces c1 = c2, and the last
enforces a1 + c1 + a2 + c2 = 2(a1 + c1) = 1. The dual can therefore be
simplified to

max
a,c,b1,b2

2(b1 − b2)

a+ c = 1/2(
a b1
b1 c

)
� 0,

(
a b2
b2 c

)
� 0

(c) For x = y = 0, we see that the spectral decomposition is(
0 1
1 0

)
= 1 ·

(
1/
√

2

1/
√

2

)(
1/
√

2 1/
√

2
)

+−1 ·
(
−1/
√

2

1/
√

2

)(
−1/
√

2 1/
√

2
)
.

Therefore, the eigen values of M(0, 0) are −1 and 1. In particular,
λ(M(0, 0)) = 1. The dual solution of same value is a = c = 1/4, b1 = 1/4,
b2 = −1/4. The value of this solution is 2(b1 − b2) = 1. Furthermore it is

feasible, since

(
1/4 ±1/4
±1/4 1/4

)
� 0, since the diagonal is non-negative and

(1/4)2 � (±1/4)2.

6. Let y1, . . . ,yN ∈ Rn. Examine the optimization problem:

min
x∈Rn

N∑
i=1

‖x− yi‖22

(a) [2 points]Prove that x∗ =
∑N

i=1 yi/N is the optimal solution.

(b) [1 point]Show that x∗ is a local minimum of order 2.
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Solution: Letting f(x) =
∑N

i=1 ‖x− yi‖22, and x∗ =
∑N

i=1 yi/N , we see that

f(x) =
N∑
i=1

‖(x− x∗)− (x∗ − yi)‖22

=
N∑
i=1

(‖x− x∗‖22 − 2(x∗ − yi)
T(x− x∗) + ‖x∗ − yi‖22)

= N‖x− x∗‖22 +
N∑
i=1

‖x∗ − yi‖22 − 2(
N∑
i=1

(x∗ − yi))
T(x− x∗)

= N‖x− x∗‖22 +
N∑
i=1

‖x∗ − yi‖22 − 2N(x∗ − x∗)T(x− x∗)

= N‖x− x∗‖22 +
N∑
i=1

‖x∗ − yi‖22.

(a) By the representation above, we see that f(x)− f(x∗) = N‖x− x∗‖22, and
hence x∗ is clear the unique global minimum.

(b) We clearly also have f(x)− f(x∗) ≥ α‖x− x∗‖22 for α = N , and hence x∗

is a local minimum of order 2 as well.

7. [4 points](Automatic additional points)

Question: 1 2 3 4 5 6 7 Total

Points: 3 3 8 13 6 3 4 40

A copy of the lecture-sheets may be used during the examination. You
may use any results from the lecture slides in your answers (Lemmas, The-
orems, Corollaries, Exercises, etc.), however you should reference the result.

Hints:

1.

(
a b
b c

)−1
= 1
ac− b2

(
c −b
−b a

)
2.

(
a b
b c

)
� 0 iff a, c ≥ 0 and ac ≥ b2.

3. A norm ‖ • ‖ on Rn has the following properties:
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(a) ‖λx‖ = |λ| ‖x‖ for all λ ∈ R, x ∈ Rn;

(b) ‖x + y‖ ≤ ‖x‖+ ‖y‖ for all x,y ∈ Rn;

(c) ‖x‖ > 0 for all x ∈ Rn \ {0}.
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