Exam: Continuous Optimisation 2016
Monday 12" December 2016

1 to attempt to

minimise the function f:R? - R, f(x) = 22? + ziexp(x;) — 11 — 2o over R%

1. We will consider the first step in iterative methods from xq = (0

(a) Starting from xg, considering the direction of steepest descent, dg, as the [2 points]
search direction and exact line search (i.e. Ay € argminyer{f(xo + Ads)}),
evaluate x; = xg + A\pdg.

(b) Starting from x,, considering Newton’s direction, dy, as the search direction [2 points]
(not normalised), and Ay = 1, evaluate x; = x¢ + dy.

Solution:

(a) We have

vie) = (M e T v = (1), de= st = (),

2rgexp(zy) — 1
Ao € argmAin{f(O, 1-N}= argm/\in{(l —A-12-1={} Ao =1,

xi =+ ods = (1) (f(Xo) 0. fla)= —1/4)

(b) We have

wie= (it e ) 100 (G 3)

(V2 f(xo)] ' = é <_22 _52) )
o 02 (5 2 ()= (1)

1/3
X1 = Xg + )\0d0 = (1?6) .

(f(xl) = —5/18 + exp(1/3)/36 ~ —0.239),

0.199

0'410) and f(x*) ~ —0.325

As a point of interest, at global minimiser: x* = (
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2. (a) Consider two convex sets A C R" and B C R, and two convex functions
h:A— Band g: B — R, with g also being a monotonically increasing

function on B.
For f: A — R given by f(x) = g(h(x)), show that f is a convex function.

(b) For a norm || e || on R™ and a convex function f : R™ — R, consider using the

barrier method to solve the problem miny{f(x) : ||x|| < 1}.
Let F={x € R": ||x|| < 1} and b: F — R be given by b(x) = (1 — ||x||) 2.
i. Justify that b is a valid barrier function for this problem.

ii. Show that b is a convex function.

[3 points]

[1 point]
[2 points]

b) i

1i.

Solution:

(a) Consider arbitrary x,y € R™ and 0 < A < 1. We need to show that

FOx+ (1= Ny) < A(x)+ (1= N f(y).

We have
h(Ax + (1 = N)y) < Ah(x) + (1 = A)h(y) as h is convex
g(h(Ax + (1 = N)y)) < g(Ah(x) + (1 — Nh(y)) as ¢ is monotonically increasing
gAR(x) + (1 = Mh(y)) < Ag(h(x)) + (1 = A)g(h(y)) as g is convex
FOx+(1=XNy) < Af(x)+ (1 =N f(y) combining these inequalities.

~

As norms are continuous, so is b. We also thus have that y € bd(F)
if and only if ||y|| = 1, and thus lim__z b(x) = oo.

X—y
Let A=F and B = [0,1), and consider the functions h : A — B and
g: B — R given by h(x) = ||x|| and g(y) = (1 —y) ™2
We have that B is trivially a convex set, and A is a convex set by
Corollary 1.16.
We have that h is a convex function by Exercise 1.4

We have ¢'(y) = 2(1 —y)~3 > 0 for all y € B, and thus ¢ is monotoni-
cally increasing.

We have ¢”(y) = 6(1 —y)~* > 0 for all y € B, and thus g is convex.
Therefore, by part (a) of this question, b is a convex function.

3. Consider the problem

min s
s.t. 2] <@+ (P)

21’1 S ZL’%"‘IQ
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(a) Is (P) a convex optimisation problem? Justify your answer.

(b) Find a strictly feasible descent direction for the problem (P) at X = (;)

(¢) i. Show that the Linear Independency Constraint Qualification holds at all
feasible points of (P).

ii. Find the KKT points for (P).

iii. Given that the optimal solution to (P) is attained, find the global min-
imiser and optimal value to this problem. Justify your answer.

iv. Provide justification for this global minimiser being a strict local minimiser
of order 1.

(d) Formulate and solve the Lagrangian dual problem to (P). Is there strong
duality?

Solution:

(a) We have
o) = s, viw=(7).  vre=(g o).
0 =t = - o Vo= (1) b= (§ ().
w(x) = 20—t =, Vaul = (P T57) ko= ()

There exists x € R? such that V?gy(x) is not positive semidefinite, and thus
the problem is not convex. (In fact the matrix is not positive semidefinite
at all x € R?.)

(b) At x = (;) we have

vrm = (7).
n®) =2 -2-2=0, Vo (R) = (2 o 1) - (_31)
$B(X)=2%2-22-2=-2<0.

The active set at X is thus Jx = {1}, and we are looking for h € R? such
that Vf(X)Th < 0 and Vg;(X) h < 0. Equivalently, we want 3h; < hy <
is a strictly feasible descent direction at X.

0. For example, h = :é

[2 points]
[2 points]

[2 points]

[3 points]
[1 point]

[1 point]

[4 points]
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(c)

i. We have
g1(x) = 27 — 21 — 22, Vi (x) = ( 1 )
2—2
g2(x) = 221 — 2% — 29, Vgo(x) = ( _1:61) )

Suppose for the sake of contradiction that LICQ does not hold at x.
Then we must have that J, = {1, 2}, and Vg;(x) and Vgo(x) are not
linearly independent.

Therefore <2I1_1_ 1) =pu (2 __?xl) for some i € R, implying that

= 1and 2z1—1 = 2—2x, or equivalently 1 = 3/4. We have 1 € Jy
and thus 0 = ¢;(x) = 23 — 2, — 13 = 9/16 — 3/4 — 2y = —3/16 — x9, OF
equivalently xo = —3/16. Finally, as 2 € J, we get the contradiction
0= go(x) =221 — 22 —29 = 3/2—9/164+3/16 = 24/16—9/16+3/16 =
18/16.

Alternatively: If J, = {1,2} then 0 = g¢;(x) = 2% — z; — x5 and

0 = ¢g2(x) = 221 — 22 — 2. Therefore 22 —z; = 22, — 22, or equivalently
0= Zx% —3x1 =21 (xl — %) We now consider two cases:

1. If x; = 0 then 9 = 22 — 2y = 0. We then have Vg,(x) = -1
1 -1

and Vgo(x) = (_21>, which are clearly linearly independent vec-

tors.
2. If zy = 3/2 then xy = 23 — 2y = 9/4 — 6/4 = 3/4. We then have

Vg (x) = <_21) and Vgo(x) = (:D, which are clearly linearly
independent vectors.

ii. We have that x € R? is a KKT point if it is feasible and there exists
A € R% such that

0= XM\a(x),
0= )\QQQ(X)a
Vix) =—=MVagi(x) — AV (x).

We final equality is equivalent to

Q-+~
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which is in turn equivalent to

0= )\1(1 — 2371) + )\2(2371 — 2),
L= A+ Ao

We now consider 3 cases:
1. Ay =0: Then we have A\s = 1 — X = 1 and 0 = A\ (1 — 227) +

Ao(221 — 2) = 221 — 2, implying that x; = 1. As Ay > 0 we also
require 0 = go(X) = 211 — 23 — 2y = 2 — 1 — @, implying that

79 = 1. We then check g1(x) = 2? -2 — 2 =1-1-1= -1 <0.
Therefore x = (1) is a KKT point, with multipliers A = <(1)>

2. Ay =0: Then we have \y = 1 — Xy = 1 and 0 = A\ (1 — 22y) +
Ao(221 — 2) = 1 — 224, implying that z; = 1/2. As A\; > 0 we also
require 0 = g1(x) = 23 — 2y — 29 = 1/4 —1/2 — 29 = —1/4 — 29,
implying that zo = —1/4. We have go(x) = 2z — 23 — 15 =
1—-1/441/4 =1 > 0. Therefore this point is infeasible, and there
is no KKT point in this case.

3. A, A2 >0: Then 0 = ¢1(x) = go(x) and thus 2?2 — 2, = 2y =
2z — x3. Therefore 0 = 22?2 — 3z; = 2x1(7; — 3/2), and thus
x1 =0 or x; = 3/2. We consider these two cases separately:

(a) x; = 0: Then zo = 22 —z; = 0. We then have 1 = \; + )\, and
0 =M\ (1—2x1) + A2(227 — 2) = Ay — 2X2. This implies that
A= (??g) and x = <8> is a KKT point.

(b) x1 = 3/2: Then vy = z3—1x; = 9/4—3/2 = 3/4. We then have
IT=XMA+Xand 0 = A\ (1 —2x1) + X222 — 2) = —2A1 + Ao

S ~(1/3 _(3/2) . :
This implies that A = (2/3) and x = <3/4) is a KKT point.

iii. Two alternative answers:

1. Any global minimiser is also a local minimiser. As LICQ holds
everywhere in this problem, from Remark 5.11, a local minimiser
is also a KKT point. We have three KKT points as possible global
minimisers, and by comparison we have that the global minimiser

is x* = (8), and the optimal value is zero.

2. For any x € R? feasible we have zo > 27 — 21 = x1(2; — 1) > 0
for z; € [0,1] and @9 > 21y — 2% = 21(2 — 1) > 0 for x; ¢ [0,2].
Therefore x5 > 0 for all x feasible, with equality if and only if
x = 0.
iv. The conditions of Theorem 5.13 hold at x* = (8), i.e. LICQ holds
and Jx = {1,2}, and thus this is a strict local minimiser of order 1.
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(d) We have

L(x;y) = f(x) + y191(X) + 1292(x)
=Ty + 1 (27 — 21 — 29) + 12201 — 27 — 1)

= (y1 — y2)x] + (2y2 — Y1)z + (1 — y1 — y2) 2o,
Y(y) = inf L(x;y).

xER?
We now consider the following four cases:

1. y1 + yo # 1: Then considering x5 — Fo00 we get Y(y) = —o0.

2. y1 +y2 = 1 and y; < yo: Then from the negative coefficient of the x?
term of L(x;y), we see that considering x; — oo we have ¢ (y) = —o0.

3.1 +y2=1and y; = yo: Then y; = yo = 1/2 and L(x;y) = z1/2.
Considering x; — —o0, this implies that (y) = —o0.

4. y1 +y2 =1 and y; > yo: Then

L(x;y) = (y1 — y2)x7 + (2y2 — 1)1,

which, when considering y € R? fixed, is a quadratic function in x;
with a strictly positive coefficient on the x? term. From the example
on the minimum of a Quadratic function from the slides, we then have

—(2p —y1)* _ =23y’
W)= 4(?J1 - yz) N 4(291 - 1) .

The dual problem is thus

—(2y2 — 91)2
max ———
ver2  4(y; — yo)
s.t. oy +y2 =1, y1 > y2 2> 0.

For all feasible points of this problem the objective function is less than or
equality to zero, with equality if and only if 2y, = y; = 1 — yo. Therefore
2/3

1/3)" and its optimal

the optimal solution to the dual problem is y =

value is zero. We thus have strong duality.
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4. For n € N, consider a proper cone £L C R™ and a nonsingular matrix A € R™*",
We then let K = AL = {Ax:x € L} CR"
(a) Show that K is a convex cone.
(b) Show that K is pointed.
(c) Find K*, the dual cone to K, in terms of L£*.
(d) Show that K* is pointed.
)

(e) Show that K is a proper cone. (You may assume that K is closed.)

Solution:

(a) Consider arbitrary u,v € K and A € R2. We need to show that A\ju +
)\2V S K.

There exists x,y € L such that u = Ax and v = Ay. As L is a convex
cone we have A\;x + Aoy € £, and thus Aju+ Aav = A(Ax + \ay) € K.

(b) Consider an arbitrary u € R™ such that +u € . We need to show that
u=_0.
There exists x,y € L such that u = Ax and —u = Ay. Therefore 0 =
u+(—u) = A(x+y) and x+y = A'0 = 0, or equivalently y = —x.
Therefore +x € £, implying that x =0 and u = A0 = 0.

(©) K*={yeR":u"y >0 for all u € K}
={y eR": (Ax)Ty >0 for all x € L}
={ycR":x"(ATy)>0forall x € L}
={yeR":AlyeL}={ATz:zc L} =A""L"

Any of the answers from the final line are correct.
(d) Three alternative proofs:

1. Consider arbitrary u € R” such that +u € K£*. We need to show that
u=0.
As L is a proper cone, so is L*.
We have ATu € £* and —(ATu) = AT(—u) € £*, and thus ATu = 0.
Therefore u = A~T0 = 0.

2. Consider arbitrary u € R" such that £u € £*. We need to show that
u=0.
As +u € K£* we have (u,y) > 0 and (—u,y) > 0 for all y € K, and
thus (u,y) =0 for all y € K.
Therefore 0 = (u,Ax) = u'Ax = (ATu)'x for all x € £, and as
L is full dimensional, this implies that 0 = ATu and we get the
contradiction 0 = A~-TATu = u.
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3. We will show the equivalent result that C is full-dimensional.

As L is full dimensional there exists linearly independent vectors

X1,...,X, € L. Then letting u; = Ax; for all 7, we have uy,...,u, €
KC. The proof is completed if we can show that uy, ..., u, are linearly
independent.

Suppose for the sake of contradiction that uy,...,u, are not lin-

early independent. Then IA € R™\ {0} such that 0 = _,_, \u; =
AL, Aix;). Therefore 0 = A7'0 = >, Aix;. As xy,...,X, are
linearly independent, this implies the contradiction A = 0.

(e) From Definition 7.9, K is a proper cone if it is a closed convex cone which
is pointed and full dimensional.

We can assume that C is a closed set, and from part (a) we have that K
Is a convex cone.

From part (b) we have that K is a pointed set.

From part (d) we have that K* is a pointed set, and thus by Theorem 8.11,
we have that K is full-dimensional.

5. For b € R™ and Aq,...,A,, € 8", consider the problem of varying y € R™ in
order to minimise b"y, with the constraint that all the eigenvalues of > " y;A; are
between minus one and plus two.

(a) Formulate this problem as a conic optimisation problem in a standard form.

(b) Find the dual problem to this conic optimisation problem.

If you were unable to solve part (a), then as an alternative question to (b): Find
the dual problem to maxy{bTy : (¢, C)+>.7" v (a;, A; ) € R x PSD"},

with the vectors c,ay,...,a,, € RP and the matrix C € §™.
Solution:
a
(8) min b'y
y

s.t. —1I=X Z%’Az’ <21
i=1

st (L20)=) ui( —A, Aj) € PSD" x PSD"

[2 points]
[2 points]
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Equivalent answer:

—max —b'y
y

I O = -A; O on
8. t. (o 21)—;%(() Ai) e PSD

(b) o
min ((T, 21),X)
S. t. <( _Ai7 Az ),X):—biforallizl,...,m

X € PSD" x PSD",

I\I}’%\/X - <I>V> - 2<17W>
sit. — (AL V) + (A, W) =—b; foralli=1,...,m
V,W e PSD".

Equivalent answer:

e (o 2) %)

-A; O B .
s. t. <(O Ai>,X>——biforallz—1,...7m

X € PSD*".
Solution to alternative question:

max b'y
y
m

st (¢, C)=> yi( —a, —A;)€R, xPSD"

i=1

min (c,x) + (C, X)

x,X

s.t. —(a;,x) — (A, X)=b; foralli=1,...,m
x € RE, X e PSD".

6. (Automatic additional points) [4 points]

Question: | 1 [ 2| 3 | 4|5 |6 | Total
Points: 416 |15 |7]4]4| 40

A copy of the lecture-sheets may be used during the examination. You may
use any results from the lecture slides in your answers (Lemmas, Theorems,
Corollaries, Exercises, etc.), however you should reference the result.
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Good Luck!
Hints:

1. g is a monotonically increasing function on B C R if for all a,b € B with a <'b
we have g(a) < g(b).

2. If g is differentiable in B C R then g is a monotonically increasing function on B
if and only if ¢'(z) > 0 for all z € B.

3. One of the properties of a norm is that it is a continuous function.

—1
y a b 1 c —b
’ (b c) " ac—b? <—b a>
5. The following are equivalent for A € R™*":
e A is a nonsingular matriz;

e A has an inverse matriz;

e AT has an inverse matriz.

10



