Test exam: Continuous Optimisation 2015

3TU- and LNMB-course, Utrecht.
Monday 4™ December 2015

1. Let f: R™ — R be a convex function f(y) on R™ and let A € R™*" b € R™ be
given.

(a) Show that the function g(x) := f(Ax + b) is a convex function of x on R™.

(b) Suppose that f is strictly convex. Show that then g(x) := f(Ax +0b) is strictly
convex if and only if A has (full) rank n.
Hint:  Recall that f is strictly convex if for any y, # ya, 0 < XA < 1 it holds:
SO+ (1= Nyz) <Af(y1) + (1= A)f ().

Solution:

(a) For 1,29 € R", X\ € [0,1] we find:

g Ax1 + (1= Nxzay) = f(AAx1 + (1= N)ap) +b)
= f(AAzy+ (1 — N)Axg + A0+ (1 — N\)b)
JMAzy +0) + (1 — X\)(Azy + 1))
fisconvex < Af(Azy+b)+ (1 —N)f(Aza+b)
= Ag(z1) + (1 = A)g(z2)

(b) “<” rank(A) =n implies: z1 # x2 = Axy # Azs.
As in (a) for x; # xa, X € (0,1) we obtain:

g Az + (1 — N)z2) = f(AMAzy; +b) + (1 — N)(Aza + D))
“f is strict convex, Axy + b # Axy + 0"
< Af(Az1 +b)+ (1 = N f(Aza +b)
= Ag(z1) + (1 = A)g(22)

“="  Assume rank(A) < n. Then there exist z; # xo with Az = Az,
and for any A € (0,1) we obtain:

“g(z1) = g(x2)” = g(x1) = Ag(w1) + (1 = N)g(x2).

So g is not strictly convex.

[3 points]
[4 points]
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2. For given S C R™ we define the convex hull conv(S) by

conv(S) = {x = Z)‘ixi
i=1

Show that conv(S) is the smallest convex set containing S:

(a) Show that the set conv(S) is convex with S C conv(S5).

m

Zkizl; x; € S, >0V mEN}

=1

(b) Show that for any convex set C' containing S we must have conv(S) C C.
(Hint: You may use without proof any Lemma, Theorem etc. from the course)

Solution:

(a) Take zt,2? € conv(S), A € [0,1] (with 27 = > X

; zlzzw%gesvzmj)‘J_l
A >0 for j =1,2). Then we find:

i=1"%

At 4+ (1= N)a2? = Z M\iz; + Z(l — MA22? € conv(S)
i=1

=1

since Y 7 AN 4302 (1 — A)A? =1 and “coefficients are > 0”. Note that
(trivially) S C conv(S) holds.

(b) Let S C C with convex C: Take any x € conv(S), i.e., x =Y ;" \jz; with
A >0, 221 A = 1and x; € S and thus z; € C'. Since C is convex by
Lem.2.5 (Jensen inequality) the convex combination x of points z; € C' is

in C. So conv(S) C C.

3. Consider with 0 # ¢ € R" the program:

(P) min ¢’z st. 2Twx<1.
rER?
(a) Show that T = — 17 is the minimizer of (P) with minimum value v(P) = —||¢||.

(||z|| means here the Euclidian norm.)

(b) Compute the solution 7 of the Lagrangean dual (D) of (P). Show in this way
that for the optimal values strong duality holds, i.e., v(D) = v(P).

Solution:
(a) Either show this “by a sketch”. Or as follows (using Schwarz inequality):
|lz|| < 1 implies: ¢z > —||c||[|z|| = —]|lc/l, and “ 'z = —||¢||” holds iff

C
T = —7
lell

So T = —qgr is the minimizer with v(P) = c'(— ”C”) —lle|l.
(Alternatively find T by solving the KKT-conditions.)

[3 points]
[3 points]

[2 points]

[4 points]
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(b) The dual (D) is given by

(D) max $(y) where $(y) := min L(z,y)
with Lagrangean function L(z,y) = ¢’z + y(z7x — 1).
We find for y = 0: ¢(0) = —o0.
for y > 0: The minimizer z of ¢ (y) satisfies V,L(z,y) =c+2yx =0 or
xr = —ic. So (fill in)
1 1 - 1 5

@Z)(y):—@cTc—i—@c c—y:—@c c—y.

To find an (unconstrained) maximizer of ¢ (y) for y > 0 we solve

1 1
U (y) = ECTC —1=0 with solution 7y = QHCH .

So v(D) = ¢(¥) = —|lc]| = v(P).

4. Consider the problem (in connection with the design of a cylindrical can with height
h, radius r and volume at least 27 such that the total surface area is minimal):

(P): min f(h,r):=2r(r*+7rh) st. —ar’h < —27, (and h > 0,7 > 0)
(a) Compute a (the) solution (h,7) of the KKT conditions of (P). Show that (P) [4 points]

is not a convex optimization problem.

(b) Show that the solution (h,7) in (a) is a local minimizer. Why is it the unique [3 points]
global solution?
Hint: Use the sufficient optimality conditions

Solution:

(a) We first note that the functions f(h,r) = 2x(r* + rh) and g(h,r) =
—7r?h + 27 are not convex (for & > 0). For the objective function f, e.g.,
this follows by:

r 01
V=2 Vif =2 hus: \Y%&
f 7T<2r+ h)’ f 7T(1 2) and thus: detV*f <0

We now consider the KKT condition: (Vf =—-uVg,g <0,u-g=0)

So consider: 27 (wih) = uﬂ(;h) (%):

Case 1 = 0: leads to 27?(27,1,1) = 0 with solution (h,r) = (0,0) which is
not feasible.
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Case p > 0 and thus 7r2h = 27:

The 2 equations in (x) lead to pn = 2/r and then 2(2r+h) = 22rh or h = 2r.
By using the (active) constraint we find 7r2h = 27r® = 27 with solution
r = 1. So the unique KKT solution is given by (h,7) = (2,1), = 2.

(b) (We apply the second order sufficient conditions of Th. 5.9 to the nonconvex
program (P)). So we will show (for the cone of critical directions C'(h,T)):

d"V;  L(h, 7, 0)d >0 Vd e C(h,7)\ {0} (+*)

We compute

and

= {deR?| (Dngo,_—(Dng(J}_
_ {/\(_14) A ER)

For d = A(—4,1)T # 0, (i.e., A # 0) we obtain (see (%x)):

A(—4,1)(—27) ((1) ;>)\( 14> = .. =2\2716>0 VYA#O0.
So (h,7) = (2,1) is a local minimizer.

It is the unique (global) minimizer since the point is the only KKT point.
Note that since the linear independency constraint qualification holds (Vg =
—7T(27fh) # 0, for v, h > 0) any local minimizer must be a KKT point. Also
note that for feasible ||(h,r)|| — oo also f — oo holds. (To show the latter

fact is technically “involved” and was not expected to be done.)
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5. Consider the closed set
K ={xecR?| 2 +2v, >0 and 32, + 25 > 0}

(a) Prove that K is a proper cone. [You may assume closure.]
(b) Find the dual cone to K.

Solution:

(a) In order for a set to be a proper cone it most be a closed, convex, pointed
full-dimensional cone. We will assume closure and prove the rest:

e Convex cone: Consider an arbitrary x,y € K and A, A > 0. From
Theorem 1.3 of the conic optimisation part of the course, if we can
show that \ix + A2y € K then we are done.

We have

T+ 229 2> 0, 3x1 4+ x5 > 0, )\1>0,
y1 + 2y > 0, 3y1 +y2 > 0, Ao > 0.

This implies that

()\1X + )\2}")1 + 2()\1){ + /\Qy)g = /\1(%1 + 2%2) + Ag(yl + 2y2) > O,
3(Ax + Ay )1 + (AMx + Aay)2 = M(3x; + 22) + Xa(3y1 + y2) > 0.

Therefore \ix + Ay € K.

e Full-dimensional: Using Definition 1.8, part 2 of the conic optimisation
part of the course, this follows from the space being two dimensional

and having two linearly independent vectors ((1)) , ((1)) e K.

e Pointed: We will consider an arbitrary x € R? such that +x € K.
Using Definition 1.7 of the conic optimisation part of the course, if
we can then show that x = 0 then we are done. We have

(x)1+2(x)2 >0

= 229 =0
(=%)1 + 2(=%)s > 0 } nten =0

3(x)1 + (%)2

=0 3 0
= T, + 29 = 0.
3(—x)1 + (=x)2 > 0 b

Therefore

T = % (3x1 + $22_%£5E1 + 22722 =0, Ty = (311 + 22) =3 1 =0

~
=0 =0 =0 =0

[5 points]
[1 point]
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(b) From Corollary 2.8 of the conic optimisation part of the course and the
note on slide 10/31 of the first lecture in the conic optimisation part of the
course we have that

e avmn{(3). () O}

6. We will consider bounds to the optimal value of the following problem:
min 5xf —4xix9 — 221 + x% +2

s.t. xf + 5x§ —4dxixy — 8xy =4 (A)
x € R2.

(a) Give a finite upper bound on the optimal value of problem (A).

(b) Formulate a positive semidefinite optimisation problem to give a lower bound
on the optimal value of problem (A).

(c¢) Give the dual problem to the positive semidefinite optimisation problem you
formulated in part (b) of this question.

Solution:

(a) To find an upper bound we can use any feasible point, X. If we limit our
search for a feasible point such that Z, = 0 then we would have a feasible
point if and only if 4 = 7% + 5 % 0> — 47 * 0 — 8 * 0 = 72. Therefore both
X = (2,0) and X = (—2,0) are feasible points. We only need one point to
give us an upper bound, and if we consider the feasible point X = (2,0)
then this gives us the upper bound of

5T2 — AT 1Ty — 20, + 22+ 2=5%2> —4%2%x0—2%2+0%+2
=20—0—4+0+2
=18

(b) Problem (A) is equivalent to
min 522 — 4x179 — 20173 + 25 + 273

st. a7 4 513 — 4w 1y — 8wow3 = 4

x%zl, x € R?,

[1 point]
[2 points]

[1 point]
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which is in turn equivalent to
min

x, X

s.t.

o O O

O[L)H
I oo |
e~ [\V)
|
CDH;CD
>
\/
Il

e~

0 0

0 0 ,X>:1,
01

X =xxt, x € R?,

A lower bound on this is then provided by solving the optimisation problem

5 -2 -1
min < -2 1 0 ,X>
X -1 0 2
1 -2 0
s.t. < -2 5 -4 ,X>:
0O —4 O

000
<OOO,X>
001

X € PSD3.

L,

(c) Considering slide 9/20 of lecture 3 of the conic optimisation part of this
course we have that the dual problem is

max 4y, + yo
y

5 -2 -1 1 -2 0 000
s.t. -2 1 0]-ym|-2 5 —4]-4w]|0 0 0| cPSD?
-1 0 2 0 -4 0 0 01
7. (Automatic additional points) [4 points]

Question: |1 {234 |5|6]| 7] Total

Points: 7166|7644 40

A copy of the lecture-sheets may be used during the examination.
Good luck!



