

```
Ex2 as P: mm-x stx-150
· Obviously sol of (P) is x=1 with v(P) = -1
= wD: with &(x/y) = -x + y(x-1) y 30
            mare - x + y (x-1)
                     St. &x = -1 + y = 0 or y = 1
                marge - x + (x-1) = -1
                 indep. of X.
      So ony (x,1), x ER ore learned and ont.
      or WD with &(x,1)=-1 = v(WD) = v(P)
      WD: mare &(x,y) = f(x) + [ y, g, (x)
                  St Vx & = V (x) + Zy, Vg, 1x) = 0
            17KT, 2. 8, XEF, 420
                           7 + (x) + Z y, 7 d, (x) = 0
                           33.31(x) = 0 A7
    So [x, x] is easible or (20 D) with
         \mathcal{L}(\bar{x},\bar{y}) = f(\bar{x}) + \bar{z}\bar{y}, g_1(\bar{x}) = f(\bar{x})
     By weak (WD) duality (x, q) is sol. of (WD)
  C) Note: \(\( \bar{x}, \bar{y} \) \(\left(\omega), \left(\omega) \bar{x} \text{ is min of mind(x, \bar{y}), i.e,} \)
                     L(x,y) = min L(x,y) & mox mon L(x,y)=v(D)
     Sui (WD) 15 /800. => U(WD) (V (D)
          11 11 11 worless => -co = v (VD) (-v D)
```


(D

+. la KKT VI + MA Vg + M2 Vg = U g = g = 0 2(x + 1) -3x3 -1 0 2 x 2 + MA 1 + M2 + 1 = 0	4
O &t X=(0,0) 2 - M2 = 0 M2 = 21	
B) Vg.(XI= (1), Vg.(XI=(-1) 26, md)	
By Tr. 12.2 8 is loc. min. order 1,	79
Unique: See sheld $\times_2 \times_3 \longrightarrow O(\times_1 \times_2^3)$ $= \times_2 \times_3 \longrightarrow O(\times_1 \times_2^3)$ $= \times_2 \times_4 \longrightarrow O(\times_1 \times_1^3)$	142
So. XEF => f(X) >1 = f(X) > X = > X	

4. Let $\mathcal{K}_1 \subset \mathbb{R}^n$ be a proper cone and let $A \in \mathbb{R}^{n \times n}$ be given.

[4 points]

Show that if A has (full) rank n, then $\mathcal{K}_2 = \{A\mathbf{x} \mid \mathbf{x} \in \mathcal{K}_1\}$ is a proper cone. You may assume that K_2 is closed.

Solution: A closed set K_2 is a proper cone if the following hold:

It is a convex cone:

Consider an arbitrary $y_1, y_2 \in \mathcal{K}_2$ and $\theta, \lambda \geq 0$.

We wish to show that we then have $(\theta y_1 + \lambda y_2) \in \mathcal{K}_2$.

 $\exists \mathbf{x}_1, \mathbf{x}_2 \in \mathcal{K}_1 \text{ such that } \mathbf{y}_1 = A\mathbf{x}_1 \text{ and } \mathbf{y}_2 = A\mathbf{x}_2.$

As K_1 is a proper cone, we have $(\theta \mathbf{x}_1 + \lambda \mathbf{x}_2) \in K_1$.

Therefore $(\theta \mathbf{y}_1 + \lambda \mathbf{y}_2) = A(\theta \mathbf{x}_1 + \lambda \mathbf{x}_2) \in \mathcal{K}_2$.

It is pointed:

Suppose $\exists y \in \mathbb{R}^n$ such that $y, -y \in \mathcal{K}_2$.

We wish to show that we then have y = 0.

 $\exists \mathbf{x}_1, \mathbf{x}_2 \in \mathcal{K}_1 \text{ such that } \mathbf{y} = A\mathbf{x}_1 \text{ and } -\mathbf{y} = A\mathbf{x}_2.$

We have $0 = y + (-y) = A(x_1 + x_2)$.

As A is rank n, this implies that $x_1 + x_2 = 0$.

Therefore we have $\mathbf{x}_1 \in \mathcal{K}_1$ and $-\mathbf{x}_1 = \mathbf{x}_2 \in \mathcal{K}_1$.

As K_1 is a proper cone, this implies that $x_1 = 0$, and thus $y = Ax_1 = 0$.

It is full dimensional: Two possible proofs:

1. Suppose for the sake of contradiction that K_2 is not full dimensional. Then there exists $\mathbf{z} \in \mathbb{R}^n \setminus \{0\}$ such that $\mathbf{z}^T \mathbf{y} = 0$ for all $\mathbf{y} \in \mathcal{K}_2$. For all $\mathbf{x} \in \mathcal{K}_1$ we have $A\mathbf{x} \in \mathcal{K}_2$, and thus $0 = \mathbf{z}^T (A\mathbf{x}) = (A^T\mathbf{z})^T\mathbf{x}$. As A is rank n we have $A^T\mathbf{z} \neq \mathbf{0}$, and thus we get the contradiction that \mathcal{K}_1 is not full-dimensional.

11/

2. As \mathcal{K}_1 is full dimensional, \exists linearly independent vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathcal{K}_1$. Let $\mathbf{y}_i = A\mathbf{x}_i \in \mathcal{K}_2$ for $i = 1, \dots, n$. As A is rank n and x_1, \ldots, x_n are linearly independent vectors, we have that $y_1, \ldots, y_n \in \mathcal{K}_2$ are linearly independent vectors. This implies that K_2 is full dimensional.

K2 closed: Zk = A XA -> Z Show Z = A F, XE K1 P1: Xk = A Zk

5. Consider the following one dimensional optimisation problem:

$$\min_{x} 2x^{2} - 2x$$
s.t. $x^{2} \ge 1$ (1)

(a) Sketch this problem. Using this sketch find its optimal solution, x^* , and its optimal value, v(1).

(b) Give the standard sum-of-squares approximation for this problem with d=2.

2 points

3 points

2

Ka= Y= AX X EKa) A Kn -> 1/2 y=Ax (-) x= A y

A-1 K2 -> Kn K2 vivouse viope of corbinal Kn wit contin A-7

- (c) For a degree two polynomial $h_0(x) = ax^2 + bx + c$, give a positive semidefinite constraint which is equivalent to the constraint that $h_0 \in \Sigma_2$. This is similar to the fact that for a degree zero polynomial $h_1(x) = a$, we have that $h_1 \in \Sigma_0$ if and only if $a \ge 0$.
- [3 points]
- (d) Given that $(x-1)^2 \in \Sigma_2$ and $1 \in \Sigma_0$, find a lower bound on the optimal value of the problem from part (b).

[1 point]

Solution:

(a) We have that x is feasible if and only if either $x \ge 1$ or $x \le -1$. A sketch of the objective function over the feasible set is as follows:

1

From this we see that the optimal solution is at $x^* = 1$. The optimal value is thus $v(1) = f(x^*) = 0$.

(b) In standard form the problem is:

$$\min_{x} \quad 2x^2 - 2x$$
s.t.
$$x^2 - 1 \ge 0,$$

1/2

21/2

i.e. m=n=1 and $f(x)=2x^2-2x$ and $g_1(x)=x^2-1$. We have $d_0=0$ and $d_1=2$ and d=2. The SOS problem is thus:

$$\max_{h,t} t$$
s.t. $2x^2 - 2x - t = h_0(x) + h_1(x)(x^2 - 1),$

$$h_0 \in \Sigma_2, \quad h_1 \in \Sigma_0.$$

N.B. Σ_i ' denotes the set of sum-of-squares polynomials of degree up to and including i. The equality in the SOS optimisation problem is coefficientwise.

3

(c) We have n = 1 and d = 2. Therefore $s = \lceil d/2 \rceil = 1$ and $N = \binom{2}{1} = 2$ and $\mathbf{v}_s = \mathbf{v}_1 = \begin{pmatrix} x, & 1 \end{pmatrix}^T$ (should be of dimension N = 2).

Considering $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{pmatrix}$, we have $\mathbf{v}_s^T A \mathbf{v}_s = a_{11} x^2 + 2a_{12} x + a_{22}$. Therefore $ax^2 + bx + c = \mathbf{v}_s^T A \mathbf{v}_s$ if and only if $a_{11} = a$ and $a_{12} = \frac{1}{2}b$ and

 $a_{22} = c$.

This implies that $h_0 \in \Sigma_2$ if and only if $\begin{pmatrix} a & \frac{1}{2}b \\ \frac{1}{2}b & c \end{pmatrix} \in \mathcal{PSD}^2$.

(d) Considering $h_0(x) = (x-1)^2$ and $h_1(x) = 1$, we have

$$h_0(x) + h_1(x)(x^2 - 1) = (x - 1)^2 + (x^2 - 1) = 2x^2 - 2x - 0.$$

Therefore a feasible point to the problem is $h_0(x) = (x-1)^2$ and $h_1(x) = 1$ and t = 0. This implies a lower bound to the problem of 0.

6. (Automatic additional points)

[4 points]

1

Question:	1	2	3	4	5	6	Total
Points:	4	10	9	4	9	4	40

A copy of the lecture-sheets may be used during the examination. Good luck!