Exam Complex Function Theory Code 2023-201500405

Date : Wednesday, June 12, 2024

Place: NH-205

Time: 08.45 - 10.45

All answers must be motivated.

The use of the book, or lecture notes, summaries, etc. is not allowed. The use of a pocket calculator or any other electronic equipment is not allowed.

- 1. Of each of the following statements determine if it is true or not. If it holds, provide a proof, otherwise show that it does not hold, for instance via a counterexample.
 - (a) If u(x,y) is harmonic for all $x,y \in \mathbb{R}$, then f(z) defined as f(x+iy) = u(x;y) + iu(x;y) is entire.
 - (b) Let f have the Maclaurin/Taylor series consisting only of even powers i.e., $f(z) = \sum_{k=0}^{\infty} a_k z^2$ for $z \in \mathbb{C}$ satisfying |z| < 1, then $g(z) := f(\sqrt{z})$ defines an analytic on the same disc.
 - (c) The equation $\sin(z) = 5$ has one solution in \mathbb{C} .
 - (d) Let f be an analytic function in the punctured disc $\{z \in \mathbb{C} \mid |z| < 1 \text{ and } z \neq 0\}$. Let C_r be the circle with radius r and centre zero. If for all $r \in (0,1)$ the integral $\int_{C_r} f(z) dz$ is zero, then f is analytic in the disc $\{z \in \mathbb{C} \mid |z| < 1\}$.
- 2. Consider the "broken" unit circle Γ_{ε} , which for $\varepsilon \in (0,1)$ is defined as $\Gamma_{\varepsilon} = \{e^{i\theta} \mid \theta \in [-\pi + \varepsilon, \pi \varepsilon]\}$.
 - (a) Determine the integral $I(\varepsilon) = \int_{\Gamma_{\varepsilon}} \text{Log}(z) dz$. Here Γ_{ε} is traversed in the counter-clockwise direction.

Hint: Determine the derivative of $z\text{Log}(z) + \beta z$

(b) Calculate $\lim_{\varepsilon\downarrow 0} I(\varepsilon)$ and explain why it cannot be zero.

P.T.O.

3. Determine the integral of $\frac{1}{z^2-1}$ along the closed curve γ , as drawn in Figure 1, where γ is traversed once in the positive direction.

Figure 1: The curve γ .

4. Consider the function

$$h(z) = \frac{z(z^2 - 1)}{\cos(z) - 1}.$$

- (a) Determine the poles of h with their order.
- (b) Determine the zeros of h with their order.
- (c) Is the Laurant series around z=0 of the form $h(z)=\sum_{k=-m}^{M}a_kz^k,\ m,M\in\mathbb{N}$ or of the form $h(z)=\sum_{k=-m}^{\infty}a_kz^k,m\in\mathbb{N}$?
- 5. Determine the integral

$$\int_{-\infty}^{\infty} \frac{x^2 + x + 1}{(x^2 + 4)(x^2 + 2x + 10)} dx.$$

6. Let f be an entire function, satisfying

$$|f(z)| < |z|$$
, when $|z| \ge 2$.

- (a) Show that f(z) + z has exactly one zero (counted with multiplicity) within the circle $C_2 := \{z \in \mathbb{C} \mid |z| = 2\}$
- (b) Show that f is a linear function, i.e., f(z) = az + b, for some $a, b \in \mathbb{C}$.

Points¹

Ex. 1		Ex. 2		Ex. 3	3 Ex. 4		Ex. 5	Ex	Ex. 6	
a	2	a	3	4	a	3	5	a	3	
b	2	b	2		b	3		b	3	
c	2				c	2				
d	2									

¹Total: 36 + 4 = 40 points